

1

Executive Summary— the traditional point-and-click games from

the 90s elevated narrative in games to a new level. Their witty

dialog, amusing characters, and unique worlds, influenced gamers

and developers alike. With these games in mind, this thesis aims at

adapting the classical point-and-click narrative elements to a

modern 3D engine. As a starting point, the researcher has created

a game design of his own for a point-and-click adventure called

“Rewind”. “Rewind’s peculiarity comes from the fact that players

witness the game events in sections out of chronological order,

making the level a narrative challenge. Considering Rewind’s

narrative and story needs, the researcher has developed a series of

narrative systems using Unreal Engine 4. An inventory, a

notebook, and a dialog system, are just some of the narrative

systems that the researcher has implemented over the duration of

this project. These systems create a framework that designers can

use to develop a whole game. The researcher also provides a short

demo of Rewind, that shows the functionality of the systems, and

their potential to be part of any narrative-oriented title for Unreal

Engine 4.

Index Terms—point-and-click, narrative, game systems

I. INTRODUCTION

 The point-and-click adventures developed during the 90s by

companies like LucasArts, marked a before and after in the

design of narrative games. Today, the point and click genre has

faded away, but the influence of these games remains. This

thesis takes a look at some of these old titles, along with more

recent adventure games, and identifies some of the systems that

they used to tell their stories. From their inventories to their

dialog systems, the researcher aims at adapting these elements

to the Unreal Engine 4.

In order to accomplish that, the researcher has created a game

design for a sci-fi game called “Rewind”. In Rewind, players

take the role of a detective that receives an emergency call from

a research facility. Upon arriving at the facility, the researcher

finds that nobody is there, and starts investigating the events

that led to the call. To help him with his quest, the researcher

has a unique tool known as the Rewinder, which allows him to

enter other characters’ memories by analyzing their DNA.

Using blood samples and other DNA that he finds during his

investigation, the detective has to enter some of the scientists’

memories and solve the mystery of the empty facility. Rewind’s

narrative is unique because players witness the game events out

of chronological order. In the level, players start by finding

memories that happened the night of the call, right before they

arrived at the facility. As they progress, the memories become

more distant, and players start to learn about the midday and

morning events. Hence, Rewind’s narrative poses the challenge

of not only telling a story, but also telling the story out of order.

For this project, the researcher uses Rewind as the model to

implement a series of narrative systems, which include an

inventory, and object highlight system, a series of narrative-

oriented menus, and a dialog system, among others. The

researcher also provides a demo of Rewind, that shows the

systems’ functionality, and their potential to be part of other

narrative-oriented games for Unreal Engine 4.

 To create the systems, the researcher started by analyzing

old and new adventure games, as well as looking into guidelines

for creating narrative-oriented experiences. Taking this analysis

into consideration, the researcher looked into different

narrative-friendly game engines to use for the project, and

ultimately decided to use Unreal Engine 4. After choosing an

engine, the researcher made a list of the narrative systems to

implement, along with their purpose and narrative goal. Finally,

the researcher implemented the systems in engine, focusing on

usability, ease of use for designers, and adaptability to other

narrative games.

II. RESEARCH REVIEW

Point-and-click adventure games are one of the best

exponents of the use of storytelling in games. Their use of

dialog, peculiar characters, and unique stories, led to the

creation of some of the most memorable adventures games from

the 90s. The Mystery of Monkey Island, Syberia, or Grim

Fandango, are just some examples of the success of narrative

oriented adventures.

For the research review of this paper, the researcher analyzed

best practices for the development of narrative games. In

addition, the researcher looked into the evolution of point-and-

click games, and some of the reasons that led to the near

disappearance of the point-and-click genre. Finally, the

researcher looked at games with a strong narrative component,

including some of the point-and-click classics that helped shape

the genre. The researcher also looked into some games that tell

their story out of order, just like it happens in Rewind.

The researcher found the information by looking at books,

Google scholar, as well as game developer blogs and websites

like Gamasutra. For the games, the researcher used his personal

experience with the point-and-click genre, and selected the

games that inspired him during the design of Rewind and the

planning of this thesis.

A. Literature review

 Before creating a point-and-click system, it is important to

know how to develop a good narrative. The following articles

start by introducing best practices when creating a story-driven

product. The review then moves on to point-and-click

adventures, analyzing the things that made then great, as well

Developing narrative oriented systems for a

point-and-click adventure in Unreal Engine 4
Jorge Montolio Conde and Wendy Despain

2

as the reasons behind the point-and-click genre’s loss of

popularity in recent years. The researcher found most articles

through game developers’ websites, as well as specialized game

sites like Gamasutra.

1) Creating better narrative games

 Former Blizzard developer B. Schwabb created the engine

Storybricks to overcome artificial seeming game worlds, where

the player is the center of all the stories. Storybricks takes into

consideration all the characters in the world and their

relationships, and creates an emergent narrative with branches

that do not necessarily involve the main character. For that, the

engine considers the character’s goals, their personality traits,

and the cost of their decisions. The result are stories that always

have a reason to exist, even if the main character is not in them.

That way, the engine avoids creating uninteresting stories,

regardless of who its protagonists are.

 Although Storybricks is no longer in development, its

principle is still valid when creating narrative for games. By

considering all of the characters’ goals and motivations

independently, developers can create a rich and more-natural

narrative [1].

2) Mixing gameplay and narrative

 On the topic of developing a good story, author Shirinian

addresses the issue of merging gameplay and narrative.

According to Shirinian, it is important to be careful when

adding cinematic techniques to games, such as the popular

Quick Time Events. According to her, extremely cinematic

techniques create dissonance in the game, and affect the

player’s perception of the story. To solve this problem,

Shirinian suggests not differentiating between gameplay and

narrative. Developers, Shirinian says, should never let the

player lose control of the character. Instead, the interactivity of

games should always prevail, and players should be able to

control their character regardless of the situation. This comes

with its own risks, such as players not paying attention to

important story events, or missing them completely. Shirinian

suggests reaching a compromise between freedom and

cinematography. According to her, players should have

freedom of movement during cinematic moments, but the actual

space where they can move should be limited [2].

3) Dissonance in games

 On the topic of gameplay and narrative, author T. Lee

points out dissonance as one of the main causes of failure when

merging both elements. Like Shirinian, Lee recommends not

separating narrative and non-narrative moments, saying that

usually leads to a loss of immersion. Lee goes on to describe

two types of narrative: the explicit story, and the player’s story.

The explicit story is the story that the game is trying to tell

through its art, visuals and sounds, while the player’s story is

the story that the player gets to experience from the controlled

character’s perspective. In a perfect narrative, Lee says, both

stories are equal. Lee explains that it is important not to draw a

line between those two kinds of story, by making the narrative

moments interactive. That way, the player gets to participate in

all of the events, and consequently the story that the game is

trying to tell and the story that the player is living become the

same [3].

4) Why people still remember the old Lucasarts point-and-

click adventures

 In his article for Gamasutra, author Frank Cifaldi analyzes

the legacy of the old Lucasarts point-and-click adventures.

Cifaldi turns to professional developers, and asks them their

opinion on the classics that shaped the graphical adventure

genre. The creator of Dragon Fantasy’s, Adam Rippon,

mentions Day of the Tentacle as the game that taught him how

to create funny scenes in a game. Chris Charla, from Microsoft,

adds that the LucasArts games’ influence can go beyond the

game development field. Knowing a developer’s favorite

Lucasarts title, Charla says, can reveal details about the

developer’s personality. Many of the interviewees agree on

citing funny dialog as one of the best characteristics of the old

point-and-click games. Author Rusel DeMaria cites Loom, and

Grim Fandango, as the pinnacle of the graphic adventure genre,

citing their unique and funny story as the reason behind its

greatness. Game Designer Jordi Fine attributes the old

adventure games’ success to a combination of funny dialog,

memorable characters, and excellent writing. Finally, Alistair

McNally from Bioware argues that it is the dialog branching,

and the players’ choices, that make these games excel. Old

graphic adventures, Alistair says, triggered players’

imagination, and forced them to experiment to find the

solutions to the puzzles. The possibility to use creative solutions

to solve the game challenge’s, gave life to the games’ universes,

and fueled the player’s interest and eagerness to explore.

5) History of the Adventure Game Interface

 In her paper “Shaper Playing Experience in Adventure

Games: History of the Adventure Game Interface” PhD Clara

Fernandez-Vara performs an in-depth analysis of the history of

adventure games’ interfaces.

Fernandez-Vara starts by defining adventure games as

those games that use the same entities for gameplay and

storytelling. In adventure games, Fernandez-Vara says, story

and puzzles have the same relevance. Fernandez-Vara mentions

that adventure games face a constant struggle, between giving

players multiple choices, and communicating those choices

properly. As Fernandez-Vara points out, early text adventure

interfaces gave players complete freedom to type whatever

command they wanted. However, one of the disadvantages of

these games was that they used text as the only communication

channel. Later games fixed this problem by adding images to

the text on screen, which took some of the narrative weight

away from the text. The later addition of the point-and-click

interface introduced a completely new system, where players

could directly manipulate the game with a cursor. However, the

point-and-click mechanics came with a reduction on the

number of players’ choices. Fernandez-Vara concludes her

article by talking about the classic Myst, one of the first games

that excelled at direct player communication and immersion.

It’s first person perspective, Fernandez-Vara says, allowed

players to identify with the main character, while its lack of

NPCs avoided the need for a dialog system that could have

broken immersion. Finally, the lack of object descriptions

enhanced realism, and forced players to investigate the world

through the reading of books and notes.

3

6) Implementing branching dialog systems

 Former Bioware’s lead writer, Alexander Freed, talks

about the topic of branching dialogue systems in his article for

Gamasutra. According to Freed, branching dialogue systems

are ideal for games where the player can customize their own

character. By choosing their character’s answer in every

situation, players can craft their character’s personality.

Branching storytelling also supports games with complex

storylines, because it introduces a new game mechanic based

on discovering details about the story through the dialog.

Freed also points out that branching dialogue forces

developers to overcome certain interface-related challenges. In

a good interface, Freed says, players need to understand their

dialog choices as quickly as possible. Developers also need to

think about the potential need for “forced character lines”,

which are dialog lines that the main character says

automatically. An absence of forced lines can make the main

character seem artificial, while an excessive amount can

alienate players from the character. The number of dialog

options is also a key element in a dialog system. Adding too

many options slows the game down, while adding too few takes

control away from the player. Freed finishes his analysis with a

mention to “timers” and “interrupts” as ways to add spontaneity

to the dialog. “Timers” that force players to give quick dialog

answers can create tension, but can also lead to hurried and

unfulfilling decisions. “Interrupts”, on the other hand, allow

players to interrupt any NPC whenever the NPC is talking. Like

“timers”, “interrupts” spice up the dialog, but if abused, they

can end up becoming an irrelevant gimmick.

7) Seven Deadly Sins of Adventure Games

 Regarding the current state of adventure games, designer

Adrian Chmielarz points to seven common mistakes that

developers make when creating graphic adventures. According

to Chmielarz, one of the biggest mistakes that developers make

is adding unnecessary cinematic techniques to games.

Techniques like movie-like credits, Chmielarz say, don’t add

anything to the game experience and can be tedious for players.

Another typical mistake, according to Chrmielarz, consists on

including low-quality writing in the game. Bad writing not only

breaks immersion, but can lead to misleading dialog and mixed

signals to the player. Regarding immersion, Chrmielarz also

points to the puzzle design as a risky area in adventure games.

Players, he says, should always be able to solve the puzzles

through logic and creative actions, but never by trying to put

themselves in the designers’ shoes. Chrmielarz also mentions a

lack of internal logic as a source for player frustration.

Whenever players cannot perform an action, he says, they must

clearly understand why they are unable to do so. If the reason

seems arbitrary or not consistent, players quickly give up on the

game’s puzzles. On the topic of players’ choices, the author also

talks about story branching, and how it is important to use it

wisely. Games with excessive and useless branching, he says,

don’t add anything to the experience and may even hurt

narrative and gameplay. Finally, Chrmielarz talks about

extrinsic rewards and how they are unnecessary in adventure

games. According to him, things like point counters are

unnecessary additions, and lead to players trying to click

everything to obtain the biggest reward possible.

B. Field Review

1) Syberia

Syberia is a 2002, 3D adventure game for PC. It tells the story

of lawyer Kate Walker, as she arrives at an isolated town in

France, to seal a deal for her law company. Unable to find the

person who must sign the contract, Kate starts a trip around

France and Russia, trying to get the signature she needs, so that

she can go back home.

One of Syberia’s most remarkable elements are its HUD and

menus. Syberia’s HUD is completely empty, except for the

cursor that players use to move Kate. The clean screen lets

players focus on the game, while adding to the realism of the

experience. Regarding menus. navigating Syberia’s UI is an

effective and satisfying process. The inventory serves as a HUB

for all of the other menus, providing a single point of access to

the UI. Inside the inventory, the game makes an important

distinction between gameplay-relevant items and storytelling-

related items, by putting them in different submenus. If players

want to look for a gameplay-related item, they can stay in the

regular inventory, while if they want to learn more about

Syberia’s story, they can access the secondary “Documents

Menu”. All of Syberia’s systems try to relate to real life one

way or another. Syberia’s inventory, for instance, looks like a

metal case, where Kate keeps all of her items. Inside the case,

Kate has a cellphone that players can use to call other

characters. Players use this cellphone as they would use a real-

life phone, by pressing the number keys and the call button.

Even the dialog’s UI has a real-life inspiration. When Kate is

talking to another character, she writes all of the topics that she

wants to talk about in a notepad. Players can then click on each

note to select the topic that they want to talk about.

Regarding communication of important gameplay elements,

Syberia uses a cursor that lights up when players hover over an

Interactive Object. This system prevents players from being

overwhelmed by the amount of objects on the screen. It also

makes sure that not all objects are trivial to find, since smaller

objects require more pointing precision from players.

Figure 1: Syberia's inventory (left menu) and document menu (right

menu)[9]

4

2) Grim Fandango

Grim Fandango is a 1998 adventure game for PC, and one of

the classic adventures from LucasArts. The game follows the

misfortunes of Manny Calavera, a skeleton salesman from the

underworld, who sells trips to the afterlife for the deceased.

One of Grim Fandango’s most distinctive features is its

unique setting, a strange underworld with Mexican motives and

Art Nouveau architecture. However, Grim Fandango’s

excellence comes from its characters and witty dialog. The

main character, Manny, is a skeleton with a strong sense of

humor, who always responds to players’ input with a joke. His

best friend is a strange orange monster; whose ignorance

constantly puts the pair in danger. They are just a couple of

characters in a world filled with giant cats, fire beavers, and

pink one-eyed monsters. Regarding systems, Grim Fandango

shines thanks to its simplicity. The game tries to avoid menus

and interfaces as much as possible, so that players get into the

game’s universe and story. Players can see this simplicity in the

inventory. Instead of having the traditional menu, Grim

Fandango’s inventory is just a first person view of Manny’s

jacket. In this view, Manny personally holds the items out of his

jacket for players to see. Grim Fandango’s control scheme is

also unusual when compared to most adventure games, since it

lets players move the character with the arrow keys instead of

the mouse. The scheme gives players a more direct way of

controlling Manny, which potentiates immersion and character

identification. The only place where Grim Fandango remains

traditional is in its dialog system. During a dialog with another

character, players can select one of several options, which show

up on the screen as text lines. After talking about a certain topic,

the option for that topic may disappear, giving a sense of

progress to players.

Figure 2: Grim fandango's unique art style contributes to its

uniqueness. [11]

3) The Room 3

The Room 3 is a recent adventure game released for mobile

devices in 2015. In the game, players take the role of an

unknown character who is in search of the null element, a

strange artifact that brings madness to those who encounter it.

If there is something that The Room 3 shines for, that is its

power for immersion. The Room 3 uses the first person view,

along with great sound effects and remarkable music, to create

an unsettling and eerie atmosphere. The main character in The

Room 3 never speaks, which helps players identify themselves

with the person that they are controlling.

The Room 3 is a narrative heavy game, where players

constantly encounter written documents and notes directed at

them. Since players spend the whole game alone, these

documents are the only access that players have to the minds

and motivations of the other characters in the game. Regarding

game elements, The Room 3 has a simple HUD that shows all

of the player’s available items on screen at all times. The Room

3 can get away with showing the whole inventory on screen,

due to the fact that players never get more than 4 items at the

same time. Despite the simple inventory, players can still get

detailed information about their items by clicking on them,

which opens an auxiliary screen that lets players zoom on the

objects. Finally, The Room 3 is unusual in the sense that it

doesn’t rely on highlights to show important gameplay

elements. Instead, finding relevant items becomes part of its

gameplay. This mechanic is never frustrating or boring, since

gameplay elements are usually visible enough for the observing

player to find them. Players can also use a special “lens” in

some instances. With the lens on, players can see glowing

marks and symbols in the environment, which direct their

attention towards important gameplay areas.

Figure 3: The Room’s simple HUD. [13]

4) Amnesia

Amnesia is a first person horror game for PC, released in

2008 by Frictional Games. In Amnesia, players control a

character who has lost all of his memories. Not knowing who

they are or where they are, players embark in a quest to find out

what has happened to them.

Amnesia bases most of its gameplay on exploration and

hiding from monsters, mixed with adventure-style puzzles. In

Amnesia, players have an inventory where they keep all of the

items that they find throughout the game. Players have the

option to use these items in the world in order to progress. For

instance, at some point in the game, players have to use a

hammer and a chipper in order to open a tunnel that brings them

to the next area. The game offers the possibility to even craft

new items by merging other items. As an example, players can

5

create a hand drill by mixing several drill pieces that they find

in the game.

Although Amnesia is considered a horror experience, it has

many elements characteristic of 3D graphic adventures. Unlike

many other horror games, Amnesia is a very narrative heavy

experience, and players constantly find notes written by the

game’s antagonist, Alexander, and by the main character’s past

self. Like many adventure games, Amnesia makes a UI

distinction between the gameplay UI and the story-related

inventory. To keep consistency and realism, all story relevant

elements are inside a menu called the “Notebook”. The

“Notebook” is just another item in the players’ inventory, and

once players open it, they gain access to the main character’s

notes, diaries, and mementos.

Figure 4: Amnesia's inventory clearly separates gameplay objects

from storytelling objects. [15]

5) The Legend of Zelda: Majora’s Mask

 The Legend of Zelda: Majora’s Mask, plays with the idea

of a non-chronological story through causality and the passing

of time. In the game, the player gets to relieve the same three

days repeatedly. Once the game reaches the third day, the player

can use their Ocarina to go back in time to the first day. Because

of this unique mechanic, the player gets to see the end of some

subplots before viewing the beginning. For example, when Link

talks to a farmer on the second day, she reveals that her cows

have disappeared. The player can then go back in time to the

first day, and find a group of aliens trying to abduct the cows.

By presenting the consequences of an event first, the game

triggers the player’s curiosity. That way, the player travels back

in time voluntarily, with the hope of finding out what caused

the events in the first place. This method also provides positive

reinforcement: once the player has solved a problem, he can see

how his actions have changed the world. In the case of the

farmer, the game rewards the player with a different ending to

the story, where the farmer is happy because she gets to keep

her cows, and rewards link with a bottle of milk. Like Hotline

Miami, The Legend of Zelda: Majora’s Mask uses

environmental storytelling to reveal the passing of time. As

time goes by, the player can look at the moon’s size and get an

idea of how close it is to the end of the third day. While the

moon is normal sized in the first day, in the last day its

threatening face covers the whole sky.

 Because of its use of the environment and its play with

causality, Majora’s Mask is another good example of how

playing with non-chronological structures can spike the

player’s interest and create an interesting narrative [16][17].

Figure 5: The size of the moon in Majora's Mask shows how much

time has passed since the first day [18]

C. Summary

One of the main challenges of narrative-oriented games is

merging gameplay and narrative in a way that doesn’t detract

from the game experience. Using quick time events, creating

unnecessary branching of story, and taking over the player’s

character during cinematic moments, may not add value to the

narrative, and can get in the way of gameplay. For some genres,

it is important to understand and overcome these challenges.

Point-and-click adventures use the same gameplay for puzzle

solving and for storytelling, so it is essential for them to merge

gameplay and narrative properly. Over the years, point and

click adventures have adapted their interfaces and gameplay in

order to tackle this problem. As a result, adventure games’

interfaces have undergone substantial changes, from being text-

based, to depending on direct manipulation of the interface

through cursors.

Some point-and-click adventures have successfully

engaged players with their narrative-oriented gameplay, simple

UI, and high quality dialog. Thanks to its characters, its

underworld setting, and its Mayan-inspired universe, Grim

Fandango became an example of how to create a narrative-

heavy game successfully. Other games, like Syberia, have also

stood out thanks to their unique stories and user-friendly UIs.

In Syberia, whenever the main character wants to talk, she goes

through her talking points by reading from her notepad.

Syberia’s main character also has a cellphone, and a

“Notebook” where she keeps her documents. This real life

based UI, along with a simple HUD and unique story, results in

an example of good integration of narrative-oriented interfaces

with point-and-click mechanics.

Although point-and-click adventures are not as common

today as they were in the past, many of their elements are

present in games from different genres. The Room 3, a mobile

game developed in 2015, provides a first person point-and-click

adventure that focuses on immersing the player into its horror-

based narrative. On the other hand, the horror game Amnesia

has completely redefined the narrative genre, by adding strong

storytelling techniques to an unnerving horror experience.

While players run away from terrifying monsters, they still have

6

to gather notes, craft new items, and solve puzzles. All while

they try to solve the mystery of its character’s memory loss, and

unveil his dark past life inside a mysterious medieval castle.

III. METHODOLOGY

This thesis takes some of the narrative elements of the classic

adventure games, and implements them in the Unreal Engine 4.

To do that, the researcher created a game design that serves as

the basis for the system’s designs. This game design, for a game

called “Rewind”, adds a twist to the classical adventure game,

by including a mechanic were players have to enter other

characters’ memories in order to solve a mystery. In addition to

this unique mechanic, players witness the game events in

sections out of sequence, adding a new level of complexity to

Rewind’s storytelling.

For the project, the researcher started by analyzing the

narrative elements needed to develop Rewind. With these

elements in mind, the researcher looked at several 3D engines

with strong storytelling potential, and chose Unreal Engine 4 as

the engine that best adapted to Rewind’s requirements. The

researcher then made a list of the narrative systems needed to

build Rewind. With the systems decided, the researcher started

implementing them in engine. In addition to the systems, the

researcher developed a demo of Rewind, with the goal of

proving that the systems work as intended.

While building the project, the researcher focused on

narrative, usability, and ease of use. Level designers can take

the artifact created for this thesis and use it to develop “Rewind”

in its entirety. For some of the most generic systems, this thesis

has focused on flexibility. With some blueprint work,

developers can easily adapt the inventory system, the

highlighting system, the dialogue system, or the state system, to

their own adventure games for Unreal Engine 4.

A. Rewind’s Design Overview

For the purpose of this thesis, the researcher created a game

design for an adventure game called Rewind. All of the

systems developed for this thesis come as a result of Rewind’s

narrative and gameplay needs.

1) High Concept

Rewind is a first person graphic adventure, developed for

Unreal Engine 4. In Rewind, players take the role of Secret

Agent Cooper as he arrives at a seemingly empty research

facility, to investigate a mysterious emergency call. As a

secret agent, Cooper has the chance to use the Rewinder, a

tool that allows him to enter other people’s memories by

analyzing their DNA. Using the Rewinder on the blood

samples that he finds, Agent Cooper manages to enter the

DNA owner’s memories. These memories allow him to see

the events of the day through the eyes of the now-vanished

laboratory’s scientists.

To help him with the investigation, Agent Cooper has an

inventory where he can keep keycards and other artifacts that

he finds in the laboratory. As any good detective would, Agent

Cooper also has access to a notebook, where he takes notes

about his discoveries. By using the Rewinder, as well as

gathering items to unlock the laboratory’s machinery, Agent

Cooper must get to the bottom of the emergency call that

brought him to the laboratory.

2) Players’ goal

 Main goal: Finding out what happened in the facility.

o Secondary: filling up the timeline inside the

Notebook menu.

 Main goal: Solving puzzles in order to progress

o Secondary: Using different items, like keycards, to

access new areas of the facility.

o Secondary: Entering other characters’ memories to

gather information needed to progress.

o Secondary: talking to other characters to get extra

information and items.

 Main goal: Rescuing any person that may still be alive

inside the facility.

3) Rewind’s story

 Upon entering the facility, Agent Cooper realizes that

something terrible has happened. All lights seem to be failing,

the air is not breathable, and the dead body of a scientist is

sitting in one of the facility’s rooms. After making his way

through the debris, the investigator manages to collect some

DNA, and accesses the memories of a scientist called Dr.

Anderson. Inside the memory, the player discovers that the

laboratory filled with toxic gases a few hours before the call.

For some unknown reason, Dr. Anderson shut down all

electrical systems in the laboratory right before he died;

trapping everyone inside.

 After learning Dr. Anderson’s name, Agent Cooper gets a

gas mask from Dr. Anderson’s locker, which allows him to

venture further into the laboratory. There, he finds the other

scientist, Dr. Cook, who’s trapped in the main control room. Dr.

Cook assures the player that he does not know what triggered

the tragic events in the laboratory, and asks the investigator to

free him. In order to do that, Dr. Cook asks the player to help

him restore electricity in the laboratory. Dr. Cook then tells

players to access the scientists’ rooms and get his keycard,

which he can use to free himself. Although Agent Cooper

believes Dr. Cook at first, he soon starts suspecting that the

doctor is not telling the truth. At the same time, players start to

unveil the kind of experiments that were taking place in the

laboratory. In a vision that brings Cooper to midday, he takes

the role of Dr. Anderson as he is incinerating some kind of

human-like being. More research brings Cooper to the

conclusion that the laboratory was specializing in creating

human-like AIs, that the scientists sacrificed if they did not

meet certain standards.

 The level ends when players find the dead body of Dr.

Cook. Players soon realizes that the person trapped in the

laboratory is not Dr. Crook, but an imposter. Using Dr. Crook’s

DNA, the investigator is finally able to witness the events in the

morning of the tragedy. Seeing the past through Dr. Crook’s

eyes, the player unveils a love story between Dr. Cook and one

of the AIs in the laboratory known as Eve. Knowing that the

scientists were about to incinerate her, Eve tricked Dr. Cook

7

into freeing her that morning. After Dr. Cook freed her, she

immediately killed him, and proceeded to release toxic gases in

the laboratory, with the goal of killing as many of her captors

as possible. However, Dr. Anderson turned off the electricity

before the AI could carry out her plan, trapping her inside the

control room. Hence the person to whom players have been

speaking is not Dr. Cook, but the AI known as Eve.

4) Gameplay Overview

Rewind is a first-person, point-and-click adventure, and as

such, it shares most gameplay elements with the graphic

adventure genre. In Rewind, players explore a seemingly empty

laboratory and interact with the objects that they find. Players

can observe objects or try to use them by clicking on them.

Using the left-mouse button also lets players pick up objects,

that they can use later in order to progress.

Despite having many point-and-click elements, Rewind’s

main mechanic is a unique tool called the “Rewinder”. With the

“Rewinder”, players can enter another character’s memories

whenever they find DNA of that character. This is useful for

cases when players need to know information that only the

laboratory’s scientists would know. For instance, if players run

into a console that requires a password, they can enter a

scientist’s memory and find out his password. Then, players can

come back to the real world and use the password on the

console, which allows them to progress.

5) Gameplay elements

Rewind has several types of objects that the player can

interact with:

 Regular objects, that the player can use or observe, such

as consoles, doors, computers, etc.

 Items, that the player can pick up. Once players pick up

an item, the item goes to their inventory.

 Logs that the player can read. Logs give players insight

into the thoughts of the other characters in the level.

Once players pick up a log, it goes to their log menu.

 DNA samples. Players can use the rewinder on DNA

samples. The Rewinder then sends them to a new level,

that contains a memory of one of the game’s secondary

characters. Players get to play through that character’s

memory as if they were the character himself.

To communicate with these game elements and with the

environment, players have several available actions:

 Walking with the WASD keys.

 Interacting with objects by using the left-mouse button.

Whenever players interact with an object in the

environment, the main character makes a comment

about the object, which gives players a hint about the

object’s purpose. Interacting with the same object

several times results in different comments from the

character, which contributes to the feeling of realism.

Some objects may also react to the players’ interaction.

For instance, a locked door may open after players

interact with it.

 Starting a dialog with an NPC by using the left-mouse

button.

 Using items from their inventory, by the 1-4 number

keys. If players use the correct item on an object, the

main character makes a comment and the object reacts

to the interaction.

 Using the “Rewinder” on a DNA sample by pressing R.

Once players use the “Rewinder” on a DNA sample,

they teleport inside the memory of the character whose

DNA they analyzed. Players then play as that character,

until they reach the end of the memory and automatically

go back to the real world.

6) Menus

Players also have access to several menus, most of which

take inspiration on traditional adventure games:

 A HUD, that shows the players’ information, as well as

information about the game’s controls, and the first four

items of the inventory.

 An inventory menu, where players can see the items that

they have picked up and their descriptions.

 A timeline menu, where the character writes down the

events that took place in the research facility, in

chronological order.

 A Note Menu, where the main character takes notes

about his discoveries.

 A Log Menu, where players can read the text logs that

they have picked up in the level.

B. Choosing an engine

1) Engine requirements

One of the first steps in the project was to choose the best

engine to develop Rewind’s narrative elements. The researcher

started by creating a list of requirements that the engine should

be able to fulfil, based on Rewind’s level design:

 The engine must allow players to travel between

different levels. Entering memories means making big

changes in the map, so different levels are necessary to

tell Rewind’s story.

 The engine must allow for dynamic lighting. Some

elements of Rewind, like the research facility’s alarms,

require dynamic lights.

 The engine needs to have some kind of NPC. At the end

of Rewind, players meet one of the secondary characters,

which requires NPC functionality.

 The engine must have a dialog system, or allow the

researcher to implement a dialog system. Dialogs are an

essential part of any adventure game.

 The engine must have a customizable inventory, or

allow the designer to implement an inventory.

Inventories play a big part in adventure games

progression.

 The engine should offer the possibility to customize the

UI, i.e., add overlays to the screen or show custom

menus.

8

Based on this priorities, the researcher decided to look into

several modern engines that have a strong narrative component:

G.E.C.K. (Fallout 3), Creation Kit (Skyrim), HPL2 (Amnesia),

Source Engine (Half-Life 2), Dragon Age Origins Toolset

(Dragon Age Origins), Unity, and Unreal Engine 3.

2) Results

The following is a list of the advantages and disadvantages

of each engine, after the researcher created a small project in all

of them:

Engine Advantages Disadvantages

G.E.C.K.

 Very powerful dialog

system.

 Includes inventory.

 Many NPC models

available.

 Easy to travel between

different levels

 Very combat

oriented.

 Medieval lore.

Would require

big changes to

the story.

 Limited control

over lighting.

Creation

Kit

Source

Engine

 Allows travelling

between maps.

 Allows for lighting

control.

 Very versatile scripting

thanks to logic entities.

 Available futuristic assets

that fit Rewind’s story.

 Very limited

control over

menus and

overlays.

 Requires

inventory

implementation

from scratch.

 Only four text

channels to

communicate

with players.

 Requires

building a

dialog system

from scratch,

with only four

text channels.

HPL2

 Gives control over

lighting.

 Has some useful

storytelling elements, like

the notes and the

notebook.

 Has a voice-over system.

 Allows for level

switching.

 No friendly

NPCs. All

NPCs are

monsters.

 Small amount

of tutorials,

which could

difficult

development.

Dragon

Age

Origins

Toolkit

 Good dialog system.

 Allows for character

customization.

 Inventory already

implemented.

 Good amount of assets

 Documentation

and tutorials are

scarce.

Unity

 Prefabs and C# facilitate

creating any systems

from scratch.

 Many available assets.

 Requires coding

for almost any

system.

 Meets all other

requirements.

Unreal

Engine 4

 Blueprint facilitates

creating systems from

scratch.

 Little to no coding

required.

 Level streaming allows

for the creation of similar

maps with small

differences.

 Researcher is very

familiar with the engine.

 Researcher

would need to

buy assets.

With the previous table in mind, the researcher decided to use

Unreal Engine 4 for the project. Although Unreal Engine 4

doesn’t provide any of the systems that Rewind needs, it fulfills

all of the requirements set by the researcher, while other engines

did not. What’s more, Unreal engine 4 has an extensive library

of tutorials and documentation, which assured that the

researcher would be able to progress without major engine

problems. Although the same could be said about Unity, the

researcher favored Unreal Engine 4 over Unity due to his

familiarity with the former.

C. Storytelling elements in Rewind

In Rewind, players spend most of their time alone. Although

there is dialog in the game, most of the narrative comes from

other sources, such as the environment or the main character. A

big part of the design process for Rewind, was exploring the

different narrative channels that would help players understand

Rewind’s story. Based on Rewind’s story and the capabilities

of Unreal Engine 4, the researcher decided to use the following

narrative elements.

1) Character’s comments: conveying the main

character’s personality

Because the player is alone for most of the game, a big part

of the narrative weight lays on the main character. The main

character is the only character that stays with players at all

times. However, since Rewind uses a first person perspective,

players don’t know how the character looks, how he acts, or

how he moves. As a result, the researcher had to find a different

way of communicating the character’s thoughts, personality,

and motivations.

To address this problem, the researcher decided to create the

comment system. Like in many point-and-click adventures,

players can click on many of the objects in the environment.

Every time they do so, the main character makes a comment

about the objects that players have selected. From his

comments, players can get snippets of Agent Cooper’s

personality and train of thought. For instance, players may find

a dead body and a gas mask close to the body. If they click on

the mask, the main character may say “I’ll borrow this, I don’t

think he’ll need it anytime soon”. From that line, players can

imply that the character has a dark sense of humor, or that he is

slightly cynical.

9

Figure 6: The main character's comments give hints about his

personality.

2) Environmental storytelling through memories

Environmental storytelling is also a big part of Rewind’s

narrative. Rewind tells its story in out of order sequences, so

players usually see the end of an event before they witness how

it started. In order to accomplish this unusual storytelling

structure, Rewind resorts to the secondary characters’

memories. Entering secondary characters’ memories allows

players to see events from a different perspective, revealing

new details that players did not know. For example, during the

first part of Rewind, players enter a room that is filled with toxic

gas. They then enter a character’s memory, where they see how

the laboratory’s security systems released the gas as part of their

“Purge Protocol”. Hence players first witness the effects of the

Purge Protocol, only to find out about the origin of the protocol

later in the level. In another instance, players go into a room

where the door is completely destroyed. After investigating,

players enter another characters’ memory, where they see the

character destroying the door in order to escape from the toxic

gas that is filling the room.

The environmental storytelling is not limited to the

memories, and some environmental cues tell a story of their

own. For instance, in some areas of the level players see blood

on the floor, and they can instantly tell that someone is hurt and

probably in current danger. In some other areas players may

find that the lights are not working, or that doors don’t open, so

they immediately know that there was some kind of electric

problem in the facility.

3) Telling the laboratories background story

through the consoles

Environmental storytelling is useful for present and recent

events. However, players also need to learn about story details

that happened before the beginning of the game. What is the

laboratory’s purpose? Who founded the laboratory? How many

scientists worked there and what was their background? To

answer some of these questions, the researcher decided to create

the consoles. The consoles are electronic displays that players

can see all around the laboratory. In the game’s fiction, the

purpose of these consoles is to keep scientists updated about the

most recent events happening in the laboratory. For instance,

one console may say “Dr. X from Research Facility 3 has

received the Brainias award. After a breakthrough in his neural-

networks research…[etc]”. Reading these consoles gives

players information about the laboratory’s day-to-day, its

scientists, and the research that they conducted there.

Figure 7: Players can find consoles in several locations.

 Not all of the consoles are purely informative, and some of

them are also interactive. For instance, at some point in the

level, players have to use a console to restore the laboratory’s

electricity. Although this console has a gameplay purpose, it

can also give story hints like the other consoles do. For instance,

the message “Purge protocol activated. In order to restore

electricity insert Dr. Y’s code” may show up in the console

when players interact with it. This message tells players that

something activated the “Purge Protocol” in the laboratory.

What’s more, players may even deduce that Dr. Y is actually

someone important in the laboratory’s hierarchy, since his code

can restore electricity to the facility.

Figure 8: Players can read the console's content by clicking on it.

4) Text logs: conveying the secondary characters’

story and personality

Conveying the personality of Rewind’s secondary characters

was essential to the story, since the events in the laboratory

unfold as a result of the secondary character’s actions.

However, some of the characters are already dead or missing

when the game starts. To address this narrative challenge, the

researcher decided to create the text logs. Text logs are small

tablet-like objects that contain pieces of text written by

secondary characters. Scientists use the text logs for all kinds of

10

purposes, from recording details about their research, to

sending emails or writing diary entries.

Figure 9: Text logs are pda-like objects that players find around the

level.

Depending on the log, the author may be talking about

personal matters, or science related issues. Players may find a

log where a scientist talks about his frustration after his research

experiments fail. They may also find another log that a scientist

used as his personal diary, where he talks about his feelings

towards one of the laboratory’s AIs. Whatever the content of

the log may be, logs always convey a secondary character’s

feelings and thoughts to the players.

Figure 10: Picking up a log opens the log screen. Playrs can go back

to this screen later.

5) Conveying the difference between “real world”

and “memory world”

Rewind’s mechanic is not common, since players constantly

switch between the real world and characters’ memories.

Successfully conveying the difference between a memory and

the real world was one of Rewind’s biggest challenges. The

researcher decided to use redundancy to convey this idea to the

player, by communicating it in several different ways:

 Every time players use the Rewinder on an object that is

not DNA, the main character makes the comment “I can’t

use the Rewinder here. I need DNA to enter someone’s

memory”. The comment reminds players about the

Rewinder’s purpose and use.

Figure 11: A message reminds players how to use the Rewinder,

when they use incorrectly.

 When players use the Rewinder on a valid DNA sample,

a screen opens and displays the message “Retrieving

character X’s memories”. After some time, the message

changes to “Connection successful”. The message tells

players that they are connecting to someone else’s

memory.

Figure 12: A message on screen tells players that the Rewinder is

retrieving another characters' memories.

 On the screen that opens when players use the

“Rewinder”, players can also see the memory’s owner

name and the time of day when that memory happened.

 Once players enter a memory, a post-process effect helps

them understand that they are not in the real world

anymore. The post-process effect is similar to the visual

effects used in movies to indicate that a scene is

happening in the past. The effect serves as a hint to tell

players that they are inside someone’s memories.

11

Figure 13: A post-process effect helps players differentiate between

the real world and a memory.

 When a memory ends, a message saying “Losing

connection to memory” shows up on screen.

D. Systems Overview
The final step before creating Rewind’s demo was to list all

of the system that the game required. The researcher used his

knowledge about Unreal Engine 4, as well as the narrative

requirements of the game, to make a list of all the systems that

Rewind requires.

1) System requirements for Rewind

Requirement Solution

The main character can make comments about

any Interactive Object.

Comment

system

Players can interact with objects in the

environment.

State

system

The same object can react to the players’

interaction in different ways, based on the

players’ progress and inventory.

Players can see key information on screen at all

times.
HUD

The state of every object in the level needs to

get saved when players travel to another level.

Saving

system

Dialog needs to get saved when players go to

another level.

Once players come back from a memory, the

main level needs to load and be in the same state

that it was when they left.

When players come back from a memory, they

need to spawn on the same location that they

were at when they left. Spawning

system When players come back from a memory, they

have to be able to make comments on the

memory they just visited.

When players come back from a memory, some

events may be added to the timeline, based on

what players learned inside that memory.

Players need to be able to know which objects

they can interact with.

Highlight

system

Players must be able to access a timeline, that

shows them the events that happened in the

facility, in chronological order.

Timeline

menu

Players must be able to access the notes written

by the main character.

Note

menu

The level designer must be able to create logs

easily.
Log menu

Players must be able to read the logs that they

pick up as many times as they like.

Players must be able to have a conversation with

NPCs.

Dialog

system

Players’ conversations with NPCs needs to feel

real.

Players’ conversations with NPCs need to adapt

to the players answers and follow a critical path.

Only one widget should be visible on the screen

at the same time, including menus, consoles,

and panels.

Widget

controller

There should be a way for external level

designers to control the system’s easily.

Easy

Access

Library

12

2) Most relevant entities in Rewind

All objects that the player can interact with belong to the

blueprint class “Interactive Objects”. Based on their

functionality, the objects in the level also belong to different

children classes that inherit from “Interactive Object”. That

means that all objects have common properties and

functionality, coming from their “Interactive Object” parent

class, and some additional properties that come from their child

class, if they have one.

The following are the most common and relevant classes in

the level:

Class
Parent

Class
Description Properties

Interactive

object

- Any object that

the player can

interact with.

Reacts to

player

interaction.

Info Panel Interactive

Object

TV screens that

contain

announcements,

and information

about the

research facility.

A user widget

pops up on the

screen

whenever

players interact

with info

panels. Players

can close info

panels by

clicking

anywhere on

the screen.

DNA

sample

Interactive

Object

DNA samples,

usually blood

drops, that are

scattered around

the level.

Players can use

the “Rewinder”

on these

objects to enter

someone else’s

memory.

Doors Interactive

Object

Normal doors in

the laboratory.

They are able

to open and

close when the

player gets

close to them.

Text logs Interactive

Object

Text logs,

written by

secondary

characters.

When players

pick up a log, a

widget displays

the logs content

on the screen.

Items Interactive

Object

Items that the

players can pick

up.

Items go to the

players’

inventory, and

disappear from

the world after

players pick

them up.

E. The highlighting and commenting

system

The need for a highlight system showed early in

development, as players became overwhelmed by the amount

of possible Interactive Objects in the world. To solve this, the

researcher took an approach similar to the one found in Syberia.

Whenever players are close enough to an Interactive Object, the

object shows a highlight around it, indicating that the players

can interact with it.

 Only one object can be highlighted in the level at the same

time, and players can only interact with that object.

Figure 14: Highlight of an Interactive Object, as seen in-game

1) Action triggers

The highlight system uses what the researcher called “Action

Triggers”. Action Triggers are in charge of activating and

deactivating the highlights, based on the players’ position and

camera’s normal vector. An action trigger has three main

components, as seen in the following caption:

13

Figure 15: View of an action trigger in the engine

1. The researcher used a small yellow sphere to represent

Action Triggers in the world. This is a purely aesthetical

decision, aimed to help designers identify the action

triggers in the level.

2. The collision area is the area where players need to be for

the highlight to activate. If players are outside of this area,

the object connected to the Action Trigger doesn’t

highlight.

3. Players need to be looking at the “Look At” area for the

highlight to activate.

The different components of the Action Triggers allow

designers to completely customize the highlight for every

object. By changing the “Collision Area”, designers can decide

how close a player needs to be to an object, in order to interact

with it. With the “Look At” area, designers can force players to

look at a certain spot in order to interact with an object. That

way, if designers want to hide an object, they can create an

Action Trigger with a small “Look At” area. If they want to

make an object obvious to players, they can use an Action

Trigger with a “Look At” area that is difficult to miss.

2) Uses of the highlight system

Action triggers are linked to the Interactive Object that they

highlight. As such, they control when a player can interact with

an object. If players are inside the area of an Action Trigger,

then they can use the Interactive Object connected to it. If they

are outside of the area of the trigger, then they cannot interact

with the linked object.

Figure 16: How action triggers control object interactions.

Several Action Triggers can be connected to the same

Interactive object.

Interactive
Object

Action
Trigger

Action
Trigger

Figure 17: How action triggers connect to Interactive objects.

14

 Thanks to that, designers can link the same behavior to

different areas of the level. For instance, in a room with twenty

coffee mugs divided among several tables, the designer may

want all the mugs to behave the same. To do that, he can create

an Interactive Object that contains the mug behavior. He can

then create twenty Action Triggers, one per mug, and connect

all of the triggers to that Interactive Object.

Mug behavior
(Interactive Object)

Action Trigger

Action Trigger

Action Trigger

Action Trigger

Action Trigger

Action Trigger

Figure 18: Designers can assign the same behavior to several objects

by using the action triggers.

Using this method, designers can also centralize the players’

reactions to the objects. Let’s say, for instance, that designers

want the main character to say “This is an ugly mug” when the

player interacts with any of the mugs. However, if the player

interacts with two different mugs, the designer doesn’t want the

main character to say “This is an ugly mug” twice. Instead, the

designer wants the main character to say “This is an ugly mug”

for the first mug, and “Yeah definitely a hideous group of

mugs” for the second mug. With the use of action triggers, this

becomes a trivial task, as the following diagram shows.

Action Trigger

Action Trigger

Action Trigger

Action Trigger

Action Trigger

Action Trigger

Interactive Object

“This is an ugly
mug”

Other actions

“Yeah definitely
a hideous group

of mugs”

Figure 19: Visual representation of the mug example.

 In the game demo, the researcher used this method to control

the gas mask containers. All of the mask containers are in

different positions, but their behavior comes from a central,

invisible, Interactive Object. That way, the containers highlight

separately, but they behave as one entity.

Figure 20: Use of multiple Action Triggers in the demo

The Action Triggers also allow designers to highlight

additional non-Interactive Objects, such as static meshes and

skeletal meshes.

Interactive
Object

Execute

Static Mesh

Extra Object to
highlight

Third person actor

Extra Object to
highlight

Skeletal Mesh

Extra Object to
highlight

Highlight

Highlight

Highlight

Action Trigger

Figure 21: Action Triggers can show a highlight on objects that are

not interactive.

15

 This functionality is useful when designers want to highlight

an actor that is not interactive. In the previous mug example,

the designer would not want the invisible Interactive Object to

be highlighted, but instead he would want to highlight a specific

mug. He can accomplish this by using the “Extra Object to

Highlight” property.

Interactive Object

Execute

“This is an ugly
mug”

Other actions

Execute “Yeah definitely
a hideous mug”

Highlight

Highlight

Highlight

Highlight

Action
Trigger

Action
Trigger

Action
Trigger

Action
Trigger

Figure 22: Example of highlighting external objects

 Finally, action triggers can be disabled after an interaction.

This is useful for objects like the pickup items, which disappear

after players interact with them.

3) Advantages of the highlight system

Thanks to the Action Trigger structure, the highlight system

gives designers a lot of freedom when working with Interactive

Objects. Some of the advantages of the system include:

 Designers can “hide” objects by making their action

triggers small.

 Designers can make objects more visible to the player,

by increasing the size of their Action Triggers.

 Designers can control the behavior of several objects

with the same entity, while still highlighting the objects

individually.

 Designers can highlight gameplay-relevant objects that

are not interactive, like static meshes and skeletal

meshes.

4) Current limitations and possible solutions

Despite its flexibility, the highlight system has certain

limitations. The Collision Area of the Action Triggers is always

a sphere, so using other shapes requires changes in the Action

Trigger. To use cubes, cylinders, or combinations of shapes, the

designers would have to make small changes in the Action

Trigger blueprints.

Additionally, Action Triggers connect with Interactive

Objects through a simple object reference variable. If a designer

links an Action Trigger to an Interactive Object, and then moves

the Interactive Object to another position, the designer has to

move the Action Trigger manually. With more time, the

researcher could make the Action Triggers inherit from Actor

Components, so that designers could add the Action Triggers as

a component in other actors.

F. The HUD

When developing the HUD, the researcher focused on

balancing information conveyance with screen cleanness. The

HUD went through several iterations before the final

implementation. The researcher used player feedback to know

which information was useful for players, as well as which

areas of the screen were best to display that information.

1) Considerations when building the HUD

The researcher set the following priorities, to use as

guidelines when building the HUD:

Consideration Goal

Many adventures games

show the inventory in the

HUD, for players

convenience.

Let players see some of

their inventory items in the

HUD, so that they don’t

have to go to the inventory

every time they need to use

an item.

In Rewind, players can

control different characters.

When players enter a

character’s memory, they

start playing as that

character.

Display information about

the character that the player

is currently controlling.

Players may forget what the

Rewinder is, and how to use

it.

Show the Rewinder on the

HUD at all times.

Access to the Notebook

should be straightforward,

otherwise players might not

use it.

Show the Notebook icon on

the HUD.

The game controls involve

both the keyboard and the

mouse, so players may

forget some of them.

Display the controls on the

HUD, in a subtle way.

16

2) First iteration of the HUD

Following the guidelines listed in the previous section, the

initial HUD had the following layout:

Figure 23: First iteration of the HUD with visible inventory

Figure 24: First iteration of the HUD, with hidden inventory.

1. Information about the character that the player is currently

controlling. It also reminds players how to open the

“Diary” (early name for the Notebook).

2. The main character’s comments appear on this text entity.

3. When players select an item from their inventory, the name

of the item and a description appear on this bar.

4. A panel to remind players about the Rewinder.

5. A panel to remind players about the basic interaction

controls, as well as how to open the inventory.

6. The inventory was closed by default, to avoid cluttering the

screen too much. To open the inventory (panel 6) players

just needed to press “I”. If players pressed “I” again, the

panel disappeared again. Once the inventory opened,

players could use any items in it by pressing a number

between 1 and 4.

The initial implementation of the HUD had several issues,

that became evident after playtesting.

3) Improvements to the HUD

After analyzing playtesters’ feedback, the researcher created

a new iteration of the HUD with several improvements, as

shown in the following caption.

Figure 25: Intermediate iteration of the HUD

 In this new version, the description bar (panel 3 in previous

figure) disappeared, clearing some space on the screen. The

inventory became permanent, so that players could see which

items they had at all times. The researcher also decided to

simplify the controls for this iteration of the HUD. To do so, he

removed the distinction between “Using” and “Observing” an

object. Instead, players could only “Interact” with an object by

Issue Solution

Because the inventory was

usually hidden, players

forgot about it frequently.

Keep inventory visible at all

times.

There was too much

information on the screen,

in several different places

that were far from each

other.

Condense information by

removing some of the HUD

panels.

Players found panel 3 to be

confusing and not that

useful.

Remove the panel from the

HUD.

Even with the HUD

information, players

struggled using the controls.

Simplify game controls.

When players pressed R to

use the Rewinder, there was

no visual feedback to show

them that the Rewinder was

active. The same happened

when players pressed a

number between 1 and 4, in

order to use an item from

their inventory.

Implement a highlight for

the Rewinder and for the

inventory items.

17

pressing the left-mouse button. This change in the control

scheme made panel 5 obsolete, and the researcher decided to

remove it from the HUD. Finally, the researcher added a

highlight for the Rewinder panel. The highlight would activate

when players tried to use the Rewinder or an item, giving

players immediate visual feedback on their actions.

 The changes improved the players’ experience, but

playtesting still revealed flaws in the layout:

Issue Solution

Information was scattered

around the screen. Players

seem to focus on one of the

corners of the HUD and

ignore the information on

the other corner.

Move all HUD elements to

the same area of the screen.

Players didn’t realize that

the information in the

bottom-left panel changed,

whenever they entered

another character’s memory.

Remove the panel with the

character’s name and the

time of day.

Find a better way to convey

character switching.

Players found it weird that

the HUD didn’t change at

all for different characters.

Make the HUD visually

different when players enter

a memory.

Players did not know when

they could use the

Rewinder,

Add an icon that pops up in

the HUD whenever players

are close to a DNA sample.

4) Final HUD implementation

The researcher decided to create two HUDs for the final

implementation of the system: one HUD for the main level,

where players control the main character, and another HUD

for memories, where players control secondary characters.

 Main HUD

Figure 26: Final implementation of the main HUD

1. The researcher decided to remove this panel from the

final HUD. With the addition of the secondary HUD, the

panel that contained the character’s name and time of

day became obsolete.

2. The researcher decided to move the inventory to the

bottom of the screen, in order to concentrate all of the

HUD’s information in the same area.

3. The researcher added an icon that would pop up

whenever players were close to a DNA sample. This icon

let players know that they are in an area where they can

use the Rewinder.

4. The researcher added a notebook icon, that reminded

players of how to open the notebook.

 Memories’ HUD

Since some memories only last for a few seconds, the

secondary HUD needed to be straightforward and clear. Players

had to be able to understand that they were controlling a

secondary character with a quick glance.

Figure 27: Players' HUD when they are in a memory

 The layout only contains the essential information that

players need to know: the name of the current character, and the

time of day. This layout proved to be very effective during

playtest, and most playtesters immediately understood that they

were controlling a new character after they entered a memory.

5) Advantages of the final layout

The final layout worked well with playtesters, and proved to

be effective for several reasons:

 It concentrated all the information into one area of the

screen.

 It contained all of the controls for the different menus.

 The game’s critical information was on the HUD at all

times.

 It gave visual feedback on player actions, by highlighting

items when players tried to sue them.

 Provided a way for players to interact directly with

certain objects, such as the Rewinder, the Notebook, or

the inventory items, without having to open any menus.

18

6) Current limitations of the HUD

One of the limiting factors of the HUD is that it uses elements

that are specific to Rewind. Removing the Rewinder from the

HUD is an easy task, but designers have to make sure that they

disable the Rewinder functionality as well. To do that, they

need to access not only the HUD blueprint, but also the First

Person Character blueprint. Given more time, the researcher

could add a boolean in the HUD, which could be used to

enable/disable the Rewinder functionality and UI elements

altogether.

The HUD also lacks a notification icon to notify players

every time the main character writes a new Note or Timeline

event. Although implementing the icon should be

straightforward, designers would have to do it themselves. In

the same way, designers can change the number of items in the

HUD’s quickbar easily, but it still requires some small widget

modifications.

G. The State System

Like many other point-and-click games, Rewind required a

character comment system. In order for the game to feel real,

the player had to be able to look at an object and make

comments about it. In the case of Rewind, this system was

especially important because it was the only way for players to

learn about the main character’s personality. Realism also

implied that the character’s comments should change if players

interacted with the same object several times.

To address this issue, the researcher implemented an

interaction system, that controlled the comments that the main

character made about the world’s objects.

1) Initial implementation: The Text Array system

The initial implementation of the system used “Text arrays”.

Each Interactive Object had a Text Array assigned to it. This

Text Array contained all of the possible comments that the

player could make about that object.

Figure 28: Structure of a Text Array

A counter would keep track of the last comment that the

player made about the object. If the player interacted with the

object again, the counter would increase and print the next

comment in line. The arrays also offered the possibility to print

the same comment over and over, until some event happened in

the level.

Text Array

Comment

Comment 2
Current String

Comment 3

Comment n

On Player interaction Interactive
Object

Print current comment

Move to next
comment?

No action

Change current
comment

YES

NO

Figure 29: Graph of the Text Array functionality

Some objects could also have more than one Text Array

assigned to them. The use of having two Text Arrays was that,

if an object underwent a radical change, the player could use a

completely new set of comments for that object.

19

The Text Array system also distinguished between two types

of interactions:

 Pick up action (Right mouse button): the player tries to

use an object, or pick it up.

 Observe action (Left mouse button): the player observes

an object and makes a comment about it, but doesn’t

interact with it.

Each type of interaction had its own array of comments. If

the players “picked up” an Interactive Object, the main

character would comment something different than if players

were “observing” the object.

Figure 30: Text arrays distinguished between “observing” an object

and “picking up” an object.

2) Advantages of the Text Array system

The Text Array system was useful for the following reasons:

 It let the level designer add character’s comments to an

Interactive Object easily.

 Whenever players travelled between levels, the game saved

the current state of all Text Arrays objects. When players

went back to the main level, the Text Arrays loaded again.

That way, the character wouldn’t repeat comments that he

had made before.

3) Limitations of the Text Array system

Early playtester feedback showed that the Text Array

implementation was lacking several features:

Limitation Consequence

Text arrays only controlled

the player’s comments

about an object. They did

not save any of the other

properties of the object.

If players travelled to

another level, the state of

the object wouldn’t get

saved. For instance, a door

that the players unlocked,

would be locked again when

players came back from a

memory.

The distinction between

pickup text and observe text

was confusing to

playtesters.

Playtesters didn’t enjoy

having to use two different

keys to interact with objects.

They found the

differentiation between

“using an object”, and

“observing an object”

confusing.

Comments could only flow

linearly. Non-linear flow

required a customization of

the Interactive Object.

To arrive at a comment, the

system had to go through all

the previous comments first.

Using Text Arrays to create

a non-linear flow, that

allowed jumping between

comments, was

cumbersome and time-

consuming.

4) Final implementation: State System

To address of all the problems of the Text Array system, the

researcher created the State System. Every object in Rewind has

a series of states assigned to it. At any given point in time, an

object can only be in one specific state. Based on its state,

objects react differently to players’ interactions. For instance, a

door might have the following states:

State Pre-Conditions Reaction to

player

interaction

Door locked
 Player doesn’t

have the door’s

key.

Player comments

“This door is

locked”

Door locked 2

 Player doesn’t

have the door’s

key.

 Player has already

interacted with the

door once.

Player comments

“Still locked.

Maybe I should

try to find the

key.”

Door locked &

player has key

 Player has the key

in his inventory,

but hasn’t used it

on the door yet.

Player comments

“I have the key, I

should use it on

the door”

Door is

opening

 Player uses the

key on the door.

The door opens

Player comments

“The key works

perfectly”

Door is

opened

 Players has

already used the

key on the door.

No reaction.

20

Interactive objects can move from one state to another, but

the states themselves never change. This makes level saving a

straightforward process. In order to save an object, the game

only needs to remember the current state of the object. To reload

a level, the game saves the id of the states for all the Interactive

Objects in the level. When the level loads, the game simply

moves the Interactive Objects back to their corresponding saved

states.

Door locked 2
State 2

Object

Door

Door locked 1
State 1

Door is opening
State 3

Door opened
State 4

Current state

Figure 31: An object can have several states, but it can only be in

one state at the same time.

Objects can transition between states based on player

interaction, or other events. The following diagram shows an

example of a state flow for an Interactive Object:

Door locked 1
State 1

Object

Door

Door locked 2
State 2

Door locked &
player has key

State 3

Door is opening
State 4

Door opened
State 5

Normal
interaction

Player uses key

Player uses key

Player uses key

Automatic
transition

Yes

Player has
key?

No

Set initial state

Normal
Interaction

Figure 32: Example of flow between the states of an Interactive

Object

Finally, unlike the old Text Arrays, the states don’t

differentiate between “Observe Text” and “Pick up” text. Both

types of text have been merged into a “Text Block”.

5) States’ structure

States have the following overarching structure:

21

State X

1 – Pre-conditions

3 - Actions

2 – Pre-actions

4 – Post-Actions

5 – Next state

Figure 33: General structure of a state

1. Pre-Conditions

 Pre-conditions are conditions that need to be fulfilled

before moving to this state. For example, in the case of the

state “Door locked & players have key”, a pre-condition

could be “Players have the key in their inventory”.

2. Pre-Actions

 Actions that are performed as soon as an interactive

objet enters the state. For instance, a pre-action for the state

“Door is opened” would be “Open the door as soon as this

state is loaded”.

3. Actions

Actions that are performed when the player interacts

with the object, if the object is in this state. For example,

an action for any of the door states could be “Show a

comment from the main character saying ‘This is a door’”.

4. Post-Actions

Actions that are performed when the Interactive Object

leaves the state. For example, a post-action for the state

“Door is opening” could be “Remove the key from the

players’ inventory”.

5. Next State

The state that loads after the current state, provided that

the Next State’s pre-conditions are fulfilled.

6) Object State actors

To implement the states in the editor, the researcher used

invisible actors called “Object States”. Each “Object State”

actor represents a certain state for a certain Interactive Object.

The “Object State” is the parent class for all states in the level.

Some Interactive Objects only use the basic Object States,

while others use child classes that add extra functionality.

Creating the final version of the Object States was an

iterative process, where the researcher focused on creating

actors that were adaptable to any adventure games. The

following caption shows the final implementation of the Object

States, followed by a description of the limitation that led to the

inclusion of each property:

Figure 34: Properties of an Object State actor

1. Level Id

 Description

The state only activates if the player is in the level named

“LevelId”

 Why it was added

Different levels can share the same Interactive Object, but

the object’s behavior may need to be different based on

the level.

 Example of use

Players fix a computer in the main level. Players then

enter a memory that sends them to the past, when the

computer was still broken, so they cannot use the

computer while inside the memory. The state “Console

working” would have LevelId=MainLevel, while the state

“Console Broken” would have LevelId=MemoryLevel.

2. State Id

 Description

An Id that identifies this state. It doesn’t need to be

unique, but non-unique ids can cause problems.

 Why it was added

Some objects may need to jump to a specific state, after

the player collects an object, or after an important event

in the level.

 Example of use

22

Door closed

Door opens a bit

Door opens a bit
more

Door remains semi
opened

Player has
plank?

Player has
plank?

Player has
plank?

Player has
plank?

Player interacts

NO

Player interacts

NO

Player interacts

NO

Player interacts

NO

Go to state with
StateId=OpenDoor

YES

Figure 35: Example of use for "StateId"

3. Disable Referenced Actor (Pre-action)

 Description

 Hide the Interactive Object whenever it reaches this state.

 Why it was added

Some objects, like the pickup items and the logs, need to

disappear from the level once the player picks them up.

 Example of use

The player picks up an item. The item then moves to a state

with “1DisableReferencedActor=true” and disappears

from the level.

4. Objects to destroy (Pre-action)

 Description

The state removes the actors in this list.

 Why it was added

Some non-interactive meshes need to disappear from the

level.

 Example of use

The player uses a console to remove the toxic gas from the

laboratory. The console then enters a state called “No toxic

gas”, that removes all of the particle emitters that are

generating the gas.

5. Sounds

 Description

Some objects need to play sounds on player interaction.

 Why it was added

Objects like broken consoles need to play a “broken sound”

whenever the player tries to use them. Other objects, like

doors, need to play an “opening sound” on interaction.

 Example of use

See previous bullet point.

6. Next State variables

 Description

Control which state is next in the state queue.

 Why it was added

Objects need to be able to move to a different state after the

player interacts with them.

 Example of use

The player picks up an item. The item then moves to a state

that removes it from the level.

7. Item requirement variables

 Description

These variables allow designers to move an Interactive

Object to a new state, only after the player uses a certain

item.

 Why it was added

Some objects require players to have a specific item before

progressing to further states.

 Example of use

A door is in a “Door locked” state. The player can interact

with it, which results in a comment by the main character

(“This door is completely locked”), but simple interaction

doesn’t move the door to a new state. However, if the

player uses a plank on the door, the door moves to a new

state called “Door opened”.

8. Item giving variables

 Description

After players interact with an object, they might receive an

item.

 Why it was added

For pick up items. When players interact with a pick up

item, the item needs to go to their inventory.

 Example of use

A player interacts with a locker. The locker has a keycard

inside, that goes to the players’ inventory.

9. Timeline-related variables

 Description

Some interactions can lead to new information added to the

player’s timeline.

 Why it was added

Players have to be able to make discoveries about the

level’s story by inspecting the environment. If they make a

discovery, the timeline should update accordingly.

 Example of use

Players discover the dead body of a researcher. This adds a

new event to the timeline, “10PM – Researcher died in the

facility.”.

10. Text blocks

 Description

Text blocks contains all the comments that the character

can make when it interacts with an item.

 Why it was added

Every player interaction should trigger a response from the

main character. This is traditional for all adventure games.

7) Text States

While building the level demo, the researcher found the need

to create states that would trigger automatically. Sometimes the

design requires “spontaneous” comments from the character,

which are not triggered by any input. For instance, the player

might enter a room where all lights are off, and immediately

make the comment “This room is really dark”.

The need for this automatic states led to the creation of the

Text States. What makes Text States special is that they don’t

23

require player input to execute. When an Interactive Object

reaches a Text State, it immediately executes the actions in that

state, and automatically moves to the next state on the list.

8) Advantages of the State System

The final implementation of the state system considerably

improves the Text Array implementation. It fixes all of the

issues found during playtesting by the researcher, and provides

the following advantages:

1. States don’t need to flow linearly. An object can jump from

any state to any other state at any time.

2. States never change. Loading an Interactive Object is a

matter of connecting it to the right state.

3. States contain all the necessary information to completely

restore an Interactive Object on level loading.

4. States are easy to understand and intuitive to set up.

5. Setting up a simple Interactive Object becomes an easy,

straight-forward process, thanks to the state system. Level

Designers only need to worry about correctly setting up the

transitions between states.

9) Working on ease-of-use: State’s implementation

in engine

One of the biggest challenges of the state system was making

it easy to organize. The internal logic of the states is intricate,

and some Interactive Objects have many states that are

connected to one another

To solve this issue, the researcher decided to use empty

actors to implement the states. Level designers can drop these

actors in the world, and arrange them to their liking.

Figure 36: States have a visual representation in the world, so that

level designers can organize them as they prefer.

With a simple glance, designers can immediately know the

number of states of an object, and even the order of the different

states. The researcher found this arrangement very easy to work

with.

10) State System limitations and solutions

One of the main limitations of the state system is its semi-

linearity. In the state system, states need to be connected to

one another, through an object reference variable. Each state

only has space for one object reference, which means that each

state can only link to one other state. Therefore, the states of

an interactive object form some kind of “Linked List”.

State 2

State 1

State 3

State 4

Figure 37: The states for a certain Interactive Object form some kind

of "Linked List"

Despite this structure, the flow between states is not

completely linear, since states can bypass other states

depending on certain conditions that designers can set. For

instance, designers might decide that if players have “Object

X”, then “Interactive Object 1” jumps to State 4, whatever its

current state is. Although this gives designers some freedom

when organizing states, the system does not allow for complex

branching. If a designer wanted to connect one state to four

different “Next States” he would have to do considerable

blueprint work on the system.

Like it happens with the Action Triggers, moving an object

in the editor doesn’t move the states linked to it. Hence if

designer move an object, they need to manually move the

states that belong to that object. With more time, the

researcher could make the states an “Actor Component”,

would automatically move them along with their actor owner.

Finally, states don’t organize themselves automatically in

editor, and designers need to organize them manually. That

means that if an object requires drastic state changes, the

designers have to spend some time relocating the states to

their correct positions. Creating a script inside the Interactive

Object, that automatically organizes the states based on their

connections, could help designers with this issue in the future.

H. Menu hierarchy

To create the menu hierarchy, the researcher looked at other

point-and-click games, taking inspiration on Syberia’s menus.

Syberia makes the inventory a central HUB that allows players

to access any other menus. This structure results in a clearly

24

organized user interface, since players can access almost all of

the game’s information from the same menu. It also provides a

more realistic inventory, where the main character keeps all of

her objects (story or gameplay related) in a jacket or bag.

Rewind uses a similar system, by having an item called the

Notebook inside the inventory. The Notebook gives players

access to all the narrative-oriented menus of Rewind. Players

can also open the Notebook from the HUD, and save the extra

step of opening the inventory. The Notebook has three

submenus, each with a different story-related purpose. The

researcher explains these submenus in detail in the following

sections.

Inventory

Notebook

HUD

Notes Logs Timeline

Figure 38: Menu hierarchy in Rewind

 For more details about the Notebook, visit the Notebook

section.

I. The Inventory

Like in many adventure games, Rewind players need to

collect and use items in order to progress. The researcher aimed

at providing the following inventory functionality:

 Players can use inventory items easily

 Players can see information about the items they have

picked up.

 Players can rearrange their items inside their inventory.

1) Initial inventory

One of the researcher’s priorities when building the

inventory, was to provide players with a direct way of using

items, that wouldn’t force them to enter any menus. Initially,

the inventory was part of the screen (see HUD section), so

players could see and use their items at all items.

Figure 39: Initially the inventory was part of the HUD.

Although the layout let players use objects quickly, it had big

drawbacks. The most obvious one was scalability. The

inventory only allowed for four items, which are not usually

enough for most adventure games. At the same time, trying to

add more slots to the inventory resulted in a cluttering of the

player’s screen. The layout also lacked item information, since

players could not see a description of the items they have picked

up. In some instances, players would pick up an item and then

forget what the item was. Finally, the inventory did not let

players rearrange their items.

2) Final inventory

Using Syberia as a guideline, the researcher decided to

apply the following solutions to the inventory problem:

Limitation Solution

Allow for quick access to

some of the inventory items.

Keep a small inventory on

the screen at all items,

which players can access

directly.

Allow players to have more

than four items.

Create a bigger inventory,

that players can access by

pressing I.

Let players read

descriptions of their items.

Let players rearrange the

items in their inventory.

The researcher decided to create two inventories: a small

one that was always visible on the HUD, and a bigger one in

the form of a menu. The smaller inventory served as a shortcut

to the big inventory, and still gave players direct access to

their items without having to open the bigger menu.

25

Figure 40: Final version of the small inventory.

If players wanted to learn more about an item, or relocate

their items, they could go to the bigger menu to do so. The

bigger inventory still offers players the option to use items by

double clicking on them. A single click gives players

information about the item, as well as the item’s name.

Figure 41: The big inventory, where players can see more details

about their items.

Finally, as seen in the caption, both menus communicate with

each other, so players can move items between the small and

the big inventory without a problem. This lets players

customize their shortcuts to items to their liking.

3) Item Storage: ease of use for designers

One of the biggest problems that the researcher had to solve

while building the inventory, was related to consistency. The

researcher wanted to make sure that references to the same

item were always consistent throughout the level. For that, the

researcher decided to build an Item Storage actor, which

contains the information of all the pickup items in Rewind.

Figure 42: The Item Storage contains the information of all of the

level's items.

Whenever a blueprint needs information about an item, the

blueprint asks the storage for the item’s information. This

structure facilitates the designers job, who can access

consistent item information from any blueprint.

Item Storage

Inventory

Item 1
Id=Item1

Other info

Item 2
Id=Item2

Other info

Item N
Id=ItemN
Other info

Item 1 Item 2

Item n

Get Item Info

Get Item Info

Get Item Info

Pickup Item 1

Pickup Item 2

Get Item Info

Get Item Info

Figure 43: Whenever the designer needs an item’s information, he

can make a simple request to the item storage.

26

Hence designers only need to operate with item ids in most

blueprints, calling the Item Storage only when they need full

extended information about an item. The item storage also

facilitates adding items to the inventory. Designers need a

simple call to the storage to get the item’s information, which

they can add to the inventory afterwards.

Figure 44: Designers can add an item to the inventory by just using

its id.

Finally, the item storage provides a centralized management

of all of the level’s items. If the designers want to change any

of the items properties, they can just do so on the item storage,

without having to worry about changing the information in

any other blueprints.

4) Current Inventory limitations

The Inventory contains a fixed amount of slots that are

always visible in the Inventory widget. In a game with a small

number of items, many of the Inventory slots may remain

empty throughout the whole game, making the Inventory look

oversized. On the other hand, the Inventory limits the amount

of items that a player can have at the same time. Scaling the

inventory down is fairly easy but scaling it up requires work

on the Inventory widget. A designer wanting to allow players

to have more than seventeen items at once would have to

transform the inventory into a scrollbar.

Regarding slot size, all slots in the Inventory have the same

size. This limitation can affect games that use items with big

differences in size, as some items’ thumbnails may be too

big/or small for an Inventory slot. Again, creating an inventory

that allows for items with different sizes would require a big

time commitment for designers and a considerable amount of

widget and blueprint work.

In addition to the limitations on the design side, there are

also some issues affecting players. Players only have limited

control over the items once the items enter their inventory. For

instance, once players pick up an item, they cannot put it back

in the world.

Finally, in the current Inventory implementation, when

players want to move an item from the inventory to the HUD,

they need to drag it from one slot to the other. The dragging

mechanic might be bothersome for some players, who might

want to be able to send an item to the HUD by just pressing a

number from 1 to 4. Creating this shortcut wouldn’t be

difficult but the implementation is not currently in the artifact.

J. The Notebook

Players witness Rewind’s story in out of order sequences,

starting from the end and ending at the beginning. At the same

time, players witness many story moments while they are inside

another character’s memory. Due to the complexity of

Rewind’s storytelling structure, the researcher decided to create

the Notebook. The Notebook contains all the information that

players need in order to understand the story. When players

forget a story detail, a character, or an event, they can enter the

Notebook and easily find the information they forgot.

The Notebook contains three submenus, each one of them

having a different purpose:

Menu Purpose Example

Note menu

Contains the most

relevant discoveries

that the main

character makes.

These discoveries can

include gameplay-

relevant information.

The main character

finds the code to a

safe written on a wall.

The main character

adds the code to the

Note menu, so that

players can remember

it at any time.

Timeline

menu

Shows the story

events in

chronological order,

to help players

reconstruct the

game’s events.

Players enter Dr.

Anderson’s memory,

where they witness

his death. A new

event appears on their

timeline: “8PM – Dr.

Anderson died”.

Log menu

Shows the text logs

that the player has

collected so far.

A player picks up a

log that another

character wrote. The

log becomes available

for the player to read,

inside the log menu.

BP_MenuController

Notebook

BP_New_NoteMenu

Note Menu
BP_New_LogMenu

Log Menu
BP_TimelineMenu

Timeline Menu

Figure 45: Diagram of menu hierarchy

1) Evolution of the Notebook

In early iterations, the Note Menu, the Timeline Menu, and

the Log Menu, where all separate menus that players could open

with different keys. This was a cumbersome process, since

players had to be opening and closing menus constantly to look

at different story-related information. It also increased the

amount of keys that the players had to memorize, which was

not desirable since it slowed down gameplay. The researcher

decided that the best approach was to create the Notebook,

which provides a single point of access for the three menus.

27

Figure 46: In the final iteration, all storytelling menus are part of the

Notebook

K. The Timeline Menu

Players don’t witness the story of Rewind chronologically,

which initially made it hard for players to piece the story

together. The researcher decided to create the timeline, so that

players had a menu that they could access to see the level’s story

laid out in chronological order.

From a design standpoint, the timeline menu allows

designers to get creative with the chronology of their story,

without having to worry about players getting confused. As it

happened with the HUD, the process of creating the timeline

was a process of simplification through iteration.

1) Limitations and evolution

The first version of the timeline menu contained four

different timelines, one for each character. Playtesting showed

that by the end of the demo most timelines were almost empty,

as there were not enough events to fill them. The timeline also

had an unusual layout, so players had trouble understanding

what they were seeing on the screen.

Figure 47: The first version of the timeline menu had one timeline per

character.

To solve the initial timeline problems, the researcher merged

all timelines into one, and gave the menu a more traditional

design. The second iteration of the timeline had a vertical

design, which was a layout that players could understand easily.

In addition, the menu only had one timeline, instead of one per

character. Both changes helped players get a better idea of the

level’s story.

Figure 48: The second version of the timeline used a vertical layout

 The problem with this new timeline came from a design

standpoint, since the timeline only allowed for one event per

hour. If the designer wanted to list two events at 10PM, he was

unable to do so. For the final iteration, the researcher focused

on making the timeline more flexible for designers. The final

iteration of the timeline is similar to the mid iteration, but the

timeline is horizontal instead of vertical.

Figure 49: Final iteration of the timeline menu

The horizontal layout allows for more events per hour, giving

designers freedom to make their story more complex. The

horizontality helps players identify the menu as a timeline,

since most timelines are usually horizontal.

2) Timeline customization

While building the timeline, the designer tried to make it as

flexible as possible, so that other designers could customize it

based on their needs. The timeline has two main customizable

elements, the start/ending times, and the number of items per

hour.

28

 Starting time and ending time.

 Designers can choose at what time of day the timeline

starts, and what is the last hour showed on the timeline.

Designers can customize this value from the

BP_TimelineMenu blueprint.

 Number of events per hour.

 Designers can change the maximum number of events

per hour, by accessing the blueprint

BP_Timeline_Item_Big. However, due to the size of the

timeline widget, only three elements fit in the screen at the

same time. To go around that problem, designers need to

adapt the widget if they want to fit more items in it.

3) Adding events to the timeline

 Blueprint-wise, adding events to the timeline is very easy and

doesn’t require much work. The LIB_EasyAccess provides a

function AddItemToTimeline, which adds an event to the

timeline.

Figure 50: Adding events to the timeline is a simple process

 When adding an event to the timeline, the designer has to

create a struct item of type STR_TimelineItem with the event’s

information. When creating this struct, the research focused on

simplicity. The researcher decided the following information

was the minimum necessary in order to accomplish both good

player communication and simplicity:

 TimeId

The time of the event, in military time. Example: 10pm has

TimeId 22, 1pm has TimeId 13, etc. This field only allows

entries from 0 to 24.

 CharacterId

If the event involves a character, the Id of the character, if

not, nothing. This field color codes the events in the menu,

based on the character that lived the event. That way,

players can quickly differentiate between the different

characters in the timeline.

 TimeText

For internal use, designers don’t need to fill it.

 Event text

The text that is going to appear in the event.

4) Current limitations of the Timeline

Although designers can customize the maximum amount of

events per hour in the timeline, there is space for only three

events per hour in the Timeline widget. If designers want to

have more events per hour, they need to expand the Timeline

widget, or reduce the size of the event widgets, so that more of

them can fit on the screen. With more time, the researcher

could fix this problem by allowing scrolling in the vertical

axis, making the timeline scrollable in all directions.

L. The Note Menu

Rewind hides clues and gameplay-relevant information

inside secondary characters’ memories. That means that in

some instances, players must enter another character’s memory

in order to get information that they need to progress. This

approach makes memories gameplay-useful, and encourages

players to user the Rewinder. Memories become part of the

gameplay core loop, instead of being a separate storytelling

tool.

However, early playtesting showed a major problem with this

method. Clues like passcodes or names were very easy to forget

for players. When players forgot a code that they had seen

inside a memory, they had to go back to the memory in order to

remember it. This problem led to repetition, made the game

frustrating, and resulted in players concentrating too much on

remembering the memories’ small details.

To address this issue, the researcher created the Note Menu.

Every time the main character gets a relevant piece of

information, he writes it on the Note menu. That way, if players

forget something, they can use the Note Menu to remember it.

What’s more, the menu gives players insight about the thought

process of the main character, since he writes the notes himself.

Figure 51: The main character writes down some of his thoughts on

the note menu.

1) Past limitations and evolution

The note menu had a simple layout from the beginning, and

layout changes weren’t necessary for design purposes. The

menu underwent some art-related changes to match the other

menus in the game.

29

Figure 52: Initial iteration of the Note Menu

The biggest limitation in the Note menu came from a player

communication perspective. Playtesting showed that players

didn’t usually open the menu, and that in some cases they were

not aware of the menu’s existence. The reason behind this

problem was that the game didn’t inform players about new

notes. Consequently, many players were not aware that the Note

Menu had new information inside.

With this issue in mind, the researcher decided to force the

main character to make a comment whenever he wrote a new

note in the Note Menu. Anytime Agent Cooper is about to write

a note, he makes a different comment that looks like the

following: “I need to write this down in my notebook, so that I

don’t forget”. Using this approach, most players instantly go to

the menu to double check that the note is there. This method

also adds realism to the level, by presenting the Note Menu as

a notepad that the character writes on.

M. Logs and the Log Menu

In Rewind, the player spends most of the time alone, and it

only learns about the secondary characters’ actions through

their memories. Rewind called for a communication channel

that would show not only the secondary characters’ actions, but

also the secondary characters’ thoughts and feelings.

Understanding the secondary character’s personality is

essential in Rewind, since they trigger the events that happen in

the laboratory.

1) Text Logs

 To give extra information about the secondary characters, the

researcher decided to create the text logs. The text logs are

documents written by secondary characters. Players can find

them as physical items in the level and pick them up in order to

read them. After that, players can still access the logs through

the Log Menu, where they can reread them if they need to. Like

the notes, the logs can also be gameplay relevant, and they are

used as a way to teach players about certain story events. For

instance, in Rewind it was important for players to understand

that Dr. Anderson and Dr. Cook didn’t get along. In order to do

that, the researcher added a log in the level, where Dr. Anderson

talked about his animosity towards Dr. Cook. In the log, Dr.

Anderson also casually mentions that he has hidden a

gameplay-relevant object inside his locker. Hence if players

wanted to find that object, they had to read the log first, and

learn about Dr. Anderson and Dr. Cook’s fight.

 Playtesting showed that players found the logs useful, and

that they were interested in the logs contents.

2) Log Menu

Initially, players would find the logs in the world, but they

were not able to pick them up. If players wanted to reread a log,

they had to go back to the area were they found it. This was not

a specially entertaining process, and didn’t add anything to the

gameplay.

Figure 53: Players can find logs in the world.

To avoid unnecessary backtracking, the researcher decided

to create a log menu, so that players could go back to previous

logs from the Notebook. Like it happened with the timeline, the

log menu’s first iteration was too crowded and over-engineered.

The first pass of the Log Menu included an option to sort logs

by author, as the following capture shows:

Figure 54: First pass of the Note Menu

Once players clicked on a character’s name, thumbnails of

all of the logs written by that character would appear on the

“Note list” column. Players could then click on a thumbnail in

the “Note List”, and the full log info would appear on the “Note

Info” column. This three column layout proved to be anti-

intuitive, with players having trouble figuring out where to click

30

in order to read a log. The small amount of logs in the level also

made the menu feel empty.

 For the final iteration, the researcher decided to eliminate the

“sort by author” column. That way, the menu only had a list of

all of the logs gathered by the player. Players could still know

who the author of a log was, by looking at the thumbnail of the

log.

Figure 55: Final iteration of the log menu

3) Logs for designers: Creating a log and adding it

to the menu

Although the logic behind log processing is complex, the

researcher focused on developing an easy-to-use system for

designers. Designers can follow this simple process to add a log

to the world:

1. To create a log, designers need to start by creating a text

document with the format seen in the following caption.

Figure 56: Log text file format

2. After creating the file, designers need to save it in the

“LogFiles” folder, under the game directory.

3. The next step is creating a BP_Log blueprint in the world,

and write the name of the text file in the “LogPath” variable.

 Figure 57: After setting the LogPath variable, the log is almost

ready.

4. The log is almost ready for use, and the final step is setting

up the states so that the log disappears after players pick it

up. The underlying logic performs all of the other steps

automatically.

4) Log System’s limitations and solutions

To create a log, designers need to create a text file with the

log content, and then write the file’s name inside the editor. In

point-and-click adventures with many text logs, this can mean

having hundreds of separate text files. Since writers and

designers might need to edit several files at a time, using

separate files can be time consuming. Ideally, the system

would use a .csv file that would contain all of the texts from

all of the logs in the game. Each text would have an ID, and

that ID is what designers would introduce in editor, rather than

a text file name. The functionality is not present in the current

artifact, but the researcher could implement it with some time

by changing the C++ code that controls the logs.

Another limitation of the Text Logs derives from its C++

implementation. In the current system, designers can get the

log’s author, the log’s date, the log’s title, and the log’s

content. However, adding any extra information to the logs

would require C++ coding. Given more time, the researcher

could add a string array to the Log Info structure, so that

designers could add as many fields to it as they wanted. The

researcher would have to implement this in both blueprints

and code.

N. Dialog system

Despite spending most of his time alone, the main character

in Rewind encounters one other character during the level.

Players can talk to this character, who gives them an item that

they need in order to progress. Most importantly, dialog is

almost a requirement in any adventure game.

When designing the dialog system, the researcher looked at

traditional adventure games, and identified their common traits

of their dialogs. Most adventure games offer players the chance

to choose between several answers, with each answer triggering

a response in the other party. Players also have the possibility

to start side conversations that are not part of the critical path,

in order to get more information about a certain topic. Voice

over is also an essential part of dialog in most adventure games,

and it adds personality to main characters and secondary

characters alike. Finally, it is common for adventure games to

provide a way for players to skip through the dialog.

31

With these properties in mind, the researcher set the

following goals for the system:

Goal Decision

The dialog should offer

players several answers

from which they would be

able to choose.

Allow players to have a

maximum of 6 answers and

a minimum of 1, at any time

during the dialog.

Players’ answers should be

able to have an effect in

future conversation topics. Develop a state-based

system like the one

implemented for Interactive

Objects. Each state

represents a line of dialog

from the main character.

Some states may have

preconditions, so that they

only become available after

a certain event.

The dialog system should

offer designers the chance to

unlock dialog options only

after a certain event

happens.

The game should save the

dialog, so that dialog

doesn’t repeat when players

come back from a memory.

Players should be able to

speed up the dialog.

Move to the next state if

players left-click with their

mouse.

The dialog should include

the possibility for voice

over, at least for the NPCs.

Add an audio variable to

each dialog state.

1) General properties

Considering the goals listed above, the designer decided to

create an interactive dialog system, were players have the

chance to choose an answer for every NPC’s piece of dialog.

For the interface, the researcher decided to give players a

maximum of six possible answers. Six answers provide enough

freedom for players to feel like they were controlling the

conversation, but not enough to make dialogs overwhelming.

The final dialog interface and its different sections can be

seen in the following caption:

32

Figure 58: The final dialog interface

1. The NPCs bubble shows the last line said by an NPC. This

bubble remains visible even it is the character’s turn to

speak.

2. The bottom part of the screen displays the available

answers. Players usually get to choose between two to six

options.

3. Some answers allow players to talk about a topic that is not

part of the dialog’s critical path. Once players have

explored this dialog branch, the option may disappear or it

may remain there for players to select it again.

4. The last option in the dialog is always a “goodbye line”, so

that players can leave the conversation at any time.

During a conversation, players can choose any of the visible

options in the bottom panel. Once they choose an option, the

NPC responds, and then players receive a new set of possible

answers. Designers can make conversations as long as they

desire. They also have the option to hide the bottom panel and

create an NPC monologue, that ends when the NPC finishes

talking.

2) The Dialog States

Considering all of the priorities listed above, the researcher

decided to create a state system, similar to the one used for

Interactive Objects. Each state in the dialog system represents a

line of dialog from the main character, along with the NPC’s

answer. Dialog states have the following structure:

Dialog State X

1 – Pre-conditions

2 – Main character line

3 – NPC lines

4 – Post-actions

Figure 59: Structure of a dialog state

1. A dialog option only becomes available if the player

meets its pre-conditions. If the player doesn’t fulfill the

requirements, the option doesn’t show up in the dialog

UI.

2. The “main character’s line” is the line of dialog that

shows up in the interface’s buttons (see Figure 57).

3. The “NPC lines” are the dialog lines that the NPC says

if the dialog moves to this state.

4. Post actions are actions that the game performs after the

dialog moves from this state to another state.

Although all dialog states have this structure, the designers

can choose to leave some of the properties empty. For instance,

some states may not perform any post-actions.

3) Implementation of the dialog flow

The biggest difference between the dialog state system and

the object state system, is that dialog states don’t have a “Next

State”. Instead, the dialog flow is controlled by a single number

called the “Dialog Status”. The “Dialog Status” is an integer

that changes as the dialog progresses. A dialog state only shows

up in the answer panel if the “Dialog Status” is between a

certain numeric range.

33

Dialog State 2

Status
requirement: 2-3

Dialog Controller

2 <= Status <= 3?

Yes

Check Dialog
Status

Is status = 4?

Show State Show State

Yes

Dialog State 3

Status
requirement: 4

Is status = 1?

Dialog State 1

Status
requirement: 1

Show State

Yes

Figure 60: Logic behind dialog state availability

The “Dialog Status” changes based on the dialog options that

the player chooses, allowing the dialog to progress. The

designer also has freedom to change the Status manually

whenever he considers it necessary. For instance, if the player

obtains an important item, the designer can update the “Dialog

Status” of a dialog. The new “Dialog Status” value may then

activate some dialog options where the player can talk about the

item they just collected.

The following diagram shows a potential dialog flow,

including the change in the “Dialog Status”:

Required status: 1
Player: “Hi, I came here to buy equipment.”
NPC: “Hi, how much money do you have?”

Required status: 2
Player: “Lots”

NPC: “Great! What do you want?”

Required status: 2
Player: “Not much”

NPC: “I don’t have anything to
sell”

Set status=2

Set status=3

Required status: 3
Player: “A knife”

NPC: “Oh I have the best knives”

Required status: 3
Player: “A sword”

NPC: “You came to the right place”

End conversation

Status=1

Status=2

Status=3

Figure 61: Example of dialog flow, based on dialog status.

4) The importance of side-conversations

Dialog systems usually offer side conversations, which are

not part of the dialog’s critical path. For instance, in Rewind,

players have to talk to a scientist that is trapped inside a room.

Freeing the scientist is the main topic of the conversation, and

it makes the dialog progress. However, during the dialog,

players may have dialog options such as: “By the way, how did

you end up working here?”, “What do you guys do in this

research facility”, or “Do you know who made the emergency

call that brought me here?”. Although these options are not part

of the main dialog topic, they offer insight into the game’s story

and characters. Without these side conversations, the dialog

would feel canned and unnatural. Hence adding side-

conversations is an essential part of any dialog system.

The “Dialog Status”, however, doesn’t work when handling

side conversations. Because these conversations don’t affect the

main dialog flow, and the player can trigger them in any order,

the “Dialog Status” number is not enough to implement them.

The researcher decided to add a flag system, that allows for

side conversations to happen inside the same “Dialog Status”.

Flags are essentially the same think as the “Dialog Status”, with

the only difference that they are words instead of a number. This

paper won’t go on extensive detail regarding their

implementation, but the following diagram shows a

simplification of the logic behind them:

Don’t enter if flag car_conv_finished exists

Player: “Can you tell me about your car?”
NPC: “Yes!”

Required flag: first
Don’t enter if flag car_conv_finished exists

Player: “What color is it?”
NPC: “It’s blue.”

Add flag “first”

Add flag “second”

Status=1

Required flag: second
Don’t enter if flag car_conv_finished exists

Player: “What color is it?”
NPC: “It’s blue.”

Add flag car_conv_finished

Figure 62: This side conversation happens inside status=1

5) Ease of use: the dialog’s implementation in

Engine

Creating a dialog in the engine is similar to creating an

Interactive Object. For dialogs, designers need to drop a

“BP_MainDialogState” in the world. After that, designers just

need to add references to all of the dialog states that they want

to use in that conversation. When doing that, designers can

34

match states and UI slots, so that certain topics appear in

specific UI slots. Designers don’t need to do much else, as the

system’s logic takes care of showing the right text, based on the

pre-conditions of the states and the dialog’s status value.

Figure 63: The main dialog state contains references to all the states

in a dialog.

While developing the dialog system the researcher tried to

make it as user friendly for designers as possible. Dialog states

are visible in the world, so designers can organize them by

status value. The following caption shows an example of how

designers can lay the states in a comprehensible manner, that

can help them while debugging:

Figure 64: Visualization of a full dialog in engine.

6) Current limitations and potential solutions

Like it happens in the State System, organizing the states of

a dialog object can become a task in itself for big enough

dialogs. In situations where designers need to completely

change a dialog, they also have to rearrange all of the dialog

states manually, which can consume a lot of time.

Additionally, long dialogs can clutter the editor with their

states. One alternative to fix this issue would be to move

dialogs to blueprints, instead of the editor. This, however, has

its own risks since it could to potentially huge and

incomprehensible blueprints. Another alternative would be to

implement a script that organizes the dialog states

automatically in editor, whenever designers make a change in

a state. This system could be implemented inside the Dialog

Object’s constructor, so that it happens automatically

whenever designers make a change in one of the Dialog

States.

The fact that dialog states are different than normal states, is

another limiting factor of the Dialog System. Having different

states meant that the researcher had to write separate logic to

deal with normal states and dialog states. Ideally, both systems

would use the same kind of states, so that designers would not

have to make a distinction between state types inside

blueprints.

O. Summary

For this thesis, the researcher developed several narrative

systems for Unreal Engine 4. The researcher started by creating

a game design document for a level called Rewind. While

working on Rewind’s Design, the researcher looked into

different engines that he could use for the project, deciding on

the Unreal Engine 4 based on its features and available

documentation. The researcher then chose the narrative

elements that the level needed in order to convey the story

appropriately. These elements included comments from the

main character, text logs, console panels, an inventory, and

environmental storytelling, among others.

After choosing the game’s narrative elements, the researcher

decided which systems were necessary for Rewind. He decided

to implement a level-saving system, a character’s comments

system, and inventory, a text log system, a notebook, and a

dialog system, among others. During the implementation of

these systems, the researcher also worked in a demo for

Rewind. The researcher used this demo to test the systems, and

to get playtesters’ feedback on how to improve them. After

iterating on the playtest feedback, the researcher finalized the

systems and the demo. The final product shows the potential of

the systems, that the researcher could use to fully develop

Rewind. What’s more, designers can also use the systems to

develop other narrative-oriented projects in Unreal Engine 4.

IV. CONCLUSION

1) Unreal Engine 4 lessons

Creating the artifacts for this thesis yield several lessons

related to both the Unreal Engine 4, and Rewind’s narrative

techniques. Regarding Unreal Engine 4, the researcher

considers that it was the right choice to build the artifact for

several reasons:

 It allowed for visual implementation of several systems,

such as the state system or the dialog system. Designers can

easily work on those systems thanks to the possibility of

seeing the states as physical entities in the level editor.

 The visibility of actor’s properties in the editor, makes the

designers’ job easier.

 Unreal Engine’s level streaming made teleporting players

between the real world and memories a lot easier.

 Overall, Unreal Engine’s flexibility and available

documentation resulted in an absence of show-stopping

blockers during the project.

35

 Although widgets can be time consuming, their flexibility

also helped when developing the inventory and the

Notebook, among others.

 Blueprints made the scripting-side of the project go

smoothly, and blueprint debugging was extremely helpful.

 Coding was a simple process in Unreal Engine 4.

 Some visual elements that would be hard to implement in

other engines, like the post-process effects and the

highlights, were straight-forward to implement in Unreal

Engine 4.

However, the researcher also found that using Unreal Engine

4 had its drawbacks. Some of the issues that the researcher faced

during development included:

 Inheritance in Unreal Engine contains bugs that can disrupt

the development process. Some of the most notorious ones

were:

o In some instances, compiling an actor would erase the

content of all of its public variables. Depending on the

occasion, it led to hours of rework.

o The researcher had limited control over overwritten

functions. In double inheritance, making a call to a

“parent function” doesn’t call the function in the

immediate parent, it only calls the function in the base

class.

o Sometimes Unreal Engine overwrote public variables

with their default values, after the researcher had given

them custom values.

o Debugging classes that inherited from another class

did not work properly. Unreal Engine skipped many

breakpoints that were inside child classes.

 If the researcher made changes to a struct, all the actors

with that struct as a variable could lose the information

contained in the struct.

 The researcher could not save object references by using

Save Game blueprints, leading to a more complex level-

saving logic.

 Deleting some actors could lead to problems in blueprints

that referenced those actors.

 Playing in standalone and playing in the editor yielded

different results. For instance, the first implementation of

the level-saving system worked in editor, but did not work

in standalone mode.

2) Other lessons

While building the artifact, the researcher learned several

lessons related to narrative and UI implementation:

 The UI should be simple. Players do not read what’s in the

UI when it contains too much text.

 Players expect to be able to get out of a menu with the same

key they used to get in.

 In first person point-and-click adventures, Interactive

Objects need a highlight, so that players can differentiate

them from other objects.

 Players tend to miss dialog lines. Important information

should be redundant, and appear on screen more than once.

 It is important to communicate terminology to players. In

initial iterations of Rewind’s demo, players did not know

what the “Main Control Room” was, even when it was

obvious for the researcher,

 Players don’t enter menus unless they need to. In Rewind,

players never entered the Notebook until it became part of

the gameplay.

 Related to the last point, narrative should not be a separate

thing from gameplay, not even in the UI.

 Simple controls are better, when possible. The researcher

received negative feedback when the controls involved

different keys rather than just a simple click.

 Guiding players with lighting is effective. In some

occasions a simple lighting change affected the game

experience considerably.

3) Additional changes to complete the point-and-

click framework

This projects provides designers with a framework to create

their own point-and-click adventures, but it doesn’t free them

from doing blueprint work to accommodate the systems to

their project. Hence designers that want to use the systems,

need to know blueprints well and be willing to manipulate the

internal logic of this project in order to use the framework that

the researcher created.

Given more time, the researcher could work to complete the

framework, and create a system that does not require much

blueprint work from designers.

With this idea in mind, the researcher has looked into some

of the changes that would make this system a complete point-

and-click framework:

 State and Dialog Systems

Addition Cost

Adding a “State Editor” to Unreal (different

than the blueprint editor), where designers

can drop states and connect states in the

same way they connect blueprints. Requires

adding new UI to Unreal Engine 4 and

considerable C++ work.
Very high

(1-2 months

minimum)
Adding a “Dialog Editor”, that designers

can use to control the dialog flow directly

(drop dialog states, connect them, or change

the “Status Number”). Similar to Skyrim’s

dialog editor.

36

 Interaction System

Addition Cost

Make the Action Triggers an “Actor

Component”, so that they move with the

Interactive Objects.
Low

Allowing Collision Areas to have complex

shapes, including combinations of different

volumes such as spheres, cylinders, or cubes.
Low

 Inventory

Addition Cost

Allow items of different sizes inside the

inventory.

Remove the slots and allow players to move

items freely in the inventory.

Very high

Make inventory scalable, so that designers can

easily change the number of items.
High

Make the inventory a scrollable list, so that

there is no limitation on the amount of items

that a player can carry.

Medium

Let players add their own descriptions to the

items they pick up.
Medium

Let players move an item to the HUD by

clicking on the item, and then pressing a

number from 1 to 4, instead of having to drag

the item.

Low

Let players drop items back in the world after

picking them up.
Low

 Narrative menus

Addition Cost

Let players add their own notes to the Note

Menu.

Medium

Make the inventory a scrollable list, so that

there is no limitation on the amount of items

that a player can carry.

Medium

Let players move an item to the HUD by

clicking on the item, and then pressing a

number from 1 to 4, instead of having to drag

the item.

Low

Let players drop items back in the world after

picking them up.
Low

 Other menus

Allow different menus to be on screen at the

same time.
Very High

Let designers/players rearrange the menus to

their liking. For instance, let players choose to

always see the timeline on top of the screen,

or let designers merge the timeline and the

inventory as a single menu.

Very High

Create other game UI, such as a Control

Menu, an Options Menu, or a Pause Menu.
High

 Others

Addition Cost

Let designers choose their own hotkeys for UI

interactions and game interactions. For

instance, designers might choose to link the

keys 5678 to the HUD inventory items,

instead of the keys 1234.

Very High.

Requires

C++

coding.

Create a general “Game Saving” system, so

that players can save the game at any time.
Medium

Add an id tag to objects, that is always visible

inside the editor, so that designers can label

objects and find them easily.

Low

4) Upcoming changes

The researcher is constantly working on improving the

narrative framework, by fixing bugs and adding functionality

that may help designers and players alike. These are some of

the changes that the researcher is going to implement in the

near future:

 Flexibility for Action Triggers

o Complex shapes for Collision Areas.

o Make Action Triggers inherit from “Actor

Component”

 Facilitating communication between different

interactive objects.

o Develop an easy-to-use system that easily allows

designers to change the state of an object as a

consequence of the players’ interaction with a

different object.

o Example: players fix the “Fuse Box” in a room,

which moves the “Computers” in that room to the

“working” state.

37

 Game saving system, so that players can save the game

at any time.

 Tweaks and fixes to the state system to make it more

reliable.

o Some of the logic in the state system’s blueprints

might be difficult to understand for external

designers. A refactoring would help make the

system clearer.

 Implementation of .csv files for dialog and logs.

5) Moving forward

The researcher met all of the goals that he set at the beginning

of the project. With more time, it would be possible to tackle

some of the current limitations of the project, expanding its

scope.

 One of the project’s limitations comes from the camera

perspective. The demo uses a first person perspective, and

Rewind’s systems are not ready to be part of a third person

narrative game. Hence, adapting the systems to a third person

perspective would be a good way of expanding the project.

 Another area with potential for expansion is the audio.

Although objects can have sounds, and dialog can have voice

over, music is not supported in the current state of the artifact.

 The level streaming also has some limiting factors. Since a

stream cannot have different static lighting, the researcher could

not use streaming for certain parts of the levels that could

benefit from it. Instead, he had to make identical copies of those

level areas and create two separate level streams. This means

than whenever the original level changes, the copy needs to

change as well. Doing this was not excessively bothersome

since those areas were small, but an expansion of the level

would definitely require a rethinking of the system.

 Another obvious way of expanding the game’s scope would

be to create Rewind from beginning to end. Although designers

could do that with the systems created for this thesis, the

expansion would require extra scripting work for specific

events and wow moments.

 Rewind’s UI could also benefit from more iterations. The

researcher created throwaway art for these menus, and an art

pass would considerably improve their visual quality. Some UIs

could also receive extra functionality that would help players.

For instance, the Note menu could allow for players to enter

their own notes, and decide what events they want to remember.

 Finally, systems’ flexibility and ease of use could always be

beneficial going forward. One way of improving flexibility of

the systems would be to make them more generic. That way,

designers could use them in other narrative-oriented projects

without having to enter the blueprints at all. As they are now,

designers can use systems like the HUD for other narrative-

oriented games, but they need to remove the Rewinder from it

first. Regarding usability, some systems could be simpler,

which would increase their ease-of-use. For instance, creating a

pickup object is simple, but it requires a pickup blueprint and

three states. With some time, the researcher could create a new

blueprint that contains the three states inside of it, so that

designers would only have to drop that blueprint into the world.

REFERENCES

[1] E. Hera, "Heartstone dev invents stories that tell themselves," 2014.

Polygon. [Online]. Available:

http://www.polygon.com/2014/7/28/5929187/hearthstone-storybricks-
storytelling-engine-ai-director-blizzard. [Accessed 12 September

2015].

[2] A. Shirinian, "The uneasy Merging of Narrative and Gameplay," 2010.
Gamasutra. [Online]. Available:

http://www.gamasutra.com/view/feature/132641/the_uneasy_merging_
of_narrative_.php. [Accessed 10 September 2015].

[3] T. Lee, "Designing Game Narratuve," October 2013. [Online].

Available: http://hitboxteam.com/designing-game-narrative. [Accessed
11 September 2015].

[4] F. Cifaldi, “Why are We Still Talking about LucasArts Old Adventure

Games?”, 2013. Gamasutra. [Online]. Available:
http://www.gamasutra.com/view/feature/189899/why_are_we_still_tal

king_about_.php. [Accessed 10 March 2016].

[5] C. Fernandez-Vara, “Shaping Player Experience in Adventure Games:
History of the Adventure Game Interface” in Structure, analysis and

design of computer game player experience, 1st edition, Lapland

University Press, 2008, pp. 210-223.
[6] A. Freed, “Branching Conversation Systems and the Working Writer”,

2014. Gamasutra. [Online]. Available:

http://www.gamasutra.com/blogs/AlexanderFreed/20140909/225281/B
ranching_Conversation_Systems_and_the_Working_Writer_Part_2_D

esign_Considerations.php. [Accessed 12 March 2016].

[7] A. Chmielarz, “Seven deadly sins of adventure games”, April 2014.
The Astronauts development blog. [Online]. Available:

http://www.theastronauts.com/2014/04/seven-deadly-sins-adventure-

games/. [Accessed 15 March 2016].
[8] Syberia (PC). USA: Benoid Sokal, Microids, 2002.

[10] Grim Fandango (PC). USA: LucasArts, 1998.

[12] The Room Three (iOS). United Kingdom: Fireproof Games, 2015.
[14] Amnesia (PC). Sweden: Frictional Games, 2010.

[16] The Legend of Zelda: Majora’s Mask (Nintendo 64). USA: Nintendo,

2000.
[17] Several authors, “The Legend of Zelda: Majora's Mask Official

Website”, 2015. IGN. [Online]. Available: http://zelda.com/majoras-

mask/ [Accessed: 03 October 2015]

http://www.polygon.com/2014/7/28/5929187/hearthstone-storybricks-storytelling-engine-ai-director-blizzard
http://www.polygon.com/2014/7/28/5929187/hearthstone-storybricks-storytelling-engine-ai-director-blizzard
http://www.gamasutra.com/view/feature/132641/the_uneasy_merging_of_narrative_.php
http://www.gamasutra.com/view/feature/132641/the_uneasy_merging_of_narrative_.php
http://hitboxteam.com/designing-game-narrative
http://www.gamasutra.com/view/feature/189899/why_are_we_still_talking_about_.php
http://www.gamasutra.com/view/feature/189899/why_are_we_still_talking_about_.php
http://www.gamasutra.com/blogs/AlexanderFreed/20140909/225281/Branching_Conversation_Systems_and_the_Working_Writer_Part_2_Design_Considerations.php
http://www.gamasutra.com/blogs/AlexanderFreed/20140909/225281/Branching_Conversation_Systems_and_the_Working_Writer_Part_2_Design_Considerations.php
http://www.gamasutra.com/blogs/AlexanderFreed/20140909/225281/Branching_Conversation_Systems_and_the_Working_Writer_Part_2_Design_Considerations.php
http://www.theastronauts.com/2014/04/seven-deadly-sins-adventure-games/
http://www.theastronauts.com/2014/04/seven-deadly-sins-adventure-games/

38

TABLE OF FIGURES

Figure 1: Syberia's inventory (left menu) and document menu

(right menu)[9] .. 3
Figure 2: Grim fandango's unique art style contributes to its

uniqueness. [11] ... 4
Figure 3: The Room’s simple HUD. [13] 4
Figure 4: Amnesia's inventory clearly separates gameplay

objects from storytelling objects. [15] 5
Figure 5: The size of the moon in Majora's Mask shows how

much time has passed since the first day [18] 5
Figure 6: The main character's comments give hints about his

personality. .. 9
Figure 7: Players can find consoles in several locations. 9
Figure 8: Players can read the console's content by clicking

on it. ... 9
Figure 9: Text logs are pda-like objects that players find

around the level. .. 10
Figure 10: Picking up a log opens the log screen. Playrs can

go back to this screen later. .. 10
Figure 11: A message reminds players how to use the

Rewinder, when they use incorrectly. 10
Figure 12: A message on screen tells players that the

Rewinder is retrieving another characters' memories. 10
Figure 13: A post-process effect helps players differentiate

between the real world and a memory. 11
Figure 14: Highlight of an Interactive Object, as seen in-

game .. 12
Figure 15: View of an action trigger in the engine 13
Figure 16: How action triggers control object interactions. . 13
Figure 17: How action triggers connect to Interactive

objects. ... 13
Figure 18: Designers can assign the same behavior to several

objects by using the action triggers. 14
Figure 19: Visual representation of the mug example. 14
Figure 20: Use of multiple Action Triggers in the demo 14
Figure 21: Action Triggers can show a highlight on objects

that are not interactive. .. 14
Figure 22: Example of highlighting external objects 15
Figure 23: First iteration of the HUD with visible

inventory .. 16
Figure 24: First iteration of the HUD, with hidden

inventory. ... 16
Figure 25: Intermediate iteration of the HUD 16
Figure 26: Final implementation of the main HUD 17
Figure 27: Players' HUD when they are in a memory 17
Figure 28: Structure of a Text Array.................................... 18
Figure 29: Graph of the Text Array functionality 18
Figure 30: Text arrays distinguished between “observing” an

object and “picking up” an object. 19
Figure 31: An object can have several states, but it can only

be in one state at the same time. .. 20
Figure 32: Example of flow between the states of an

Interactive Object... 20
Figure 33: General structure of a state 21
Figure 34: Properties of an Object State actor 21
Figure 35: Example of use for "StateId" 22

39

Figure 36: States have a visual representation in the world, so

that level designers can organize them as they prefer. 23
Figure 37: The states for a certain Interactive Object form

some kind of "Linked List" .. 23
Figure 38: Menu hierarchy in Rewind 24
Figure 39: Initially the inventory was part of the HUD. 24
Figure 40: Final version of the small inventory. 25
Figure 41: The big inventory, where players can see more

details about their items. .. 25
Figure 42: The Item Storage contains the information of all

of the level's items. .. 25
Figure 43: Whenever the designer needs an item’s

information, he can make a simple request to the item

storage. ... 25
Figure 44: Designers can add an item to the inventory by just

using its id. ... 26
Figure 45: Diagram of menu hierarchy 26
Figure 46: In the final iteration, all storytelling menus are

part of the Notebook .. 27
Figure 47: The first version of the timeline menu had one

timeline per character. ... 27
Figure 48: The second version of the timeline used a vertical

layout ... 27
Figure 49: Final iteration of the timeline menu 27
Figure 50: Adding events to the timeline is a simple

process ... 28
Figure 51: The main character writes down some of his

thoughts on the note menu. .. 28
Figure 52: Initial iteration of the Note Menu 29
Figure 53: Players can find logs in the world. 29
Figure 54: First pass of the Note Menu 29
Figure 55: Final iteration of the log menu 30
Figure 56: Log text file format .. 30
Figure 57: After setting the LogPath variable, the log is

almost ready. .. 30
Figure 58: The final dialog interface 32
Figure 59: Structure of a dialog state 32
Figure 60: Logic behind dialog state availability 33
Figure 61: Example of dialog flow, based on dialog status. 33
Figure 62: This side conversation happens inside status=1 . 33
Figure 63: The main dialog state contains references to all the

states in a dialog. ... 34
Figure 64: Visualization of a full dialog in engine. 34
Figure 65: Rewind concept [1] .. 40
Figure 66: An icon (bottom right) shows up every time

players are in front of a valid DNA sample. 50

Figure 67: A post-process effects helps players differentiate

between memories and the real world. 53
Figure 68: Players learn about the main character's

personality through his comments. 54
Figure 69: A new screen opens when players interact with a

console. .. 55
Figure 70: Screen that opens when players interact with a

log. ... 56
Figure 71: HUD concept .. 57
Figure 72: Real world HUD ... 58
Figure 73: Memory HUD ... 59
Figure 74: Rewind's Inventory ... 60
Figure 75: The Notebook gives players access to three

submenus ... 61
Figure 76: Menu hierarchy in Rewind. 62
Figure 77: The main character takes notes about his

discoveries. .. 63
Figure 78: Initial concept for the log menu. 64
Figure 79: Final iteration of the log menu, as it is in game. . 65
Figure 80: Players can read a log again by clicking on the

buttons on the left sidebar. ... 66
Figure 81: In the initial concept, the timeline was part of the

HUD. .. 67
Figure 82: Timeline menu in the final game. 68
Figure 83: Incinerator concept ... 71
Figure 84: Chronological events for the player 74
Figure 85: Chronological events for Dr. Anderson 76
Figure 86: Chronological events for Dr. Cook 77
Figure 87: Area breakdown of the level 78
Figure 88: First iteration in Area 1 (Investigator) 79
Figure 89: Second iteration in Area 1 (Dr. Anderson 7pm) . 81
Figure 90: Third iteration in Area 1 (Investigator)............... 82
Figure 91: Fourth iteration in Area 1 (Dr. Anderson 6pm-

7pm) ... 84
Figure 92: Fifth iteration in Area 1 (Investigator) 86
Figure 93: First iteration in Area 2 (Investigator) 88
Figure 94: Second iteration in Area 2 (Dr. Anderson 5pm-

6pm) ... 90
Figure 95: Third iteration in Area 2 (Investigator)............... 92
Figure 96: First iteration in Area 3 (Dr. Anderson 3pm-

6pm) ... 94
Figure 97: Second iteration in Area 3 (Investigator) 96
Figure 98: Third iteration in Area 3 (Dr. Cook 9am-10am) . 98
Figure 99: Fourth iteration in Area 3 (Investigator) 100

LDD Confidential Unreal Engine 4

Jorge Montolio Page 40 of 101 6/1/2016

V. APPENDIX

Figure 65: Rewind concept [1]

Unreal Engine 4

Version 1.0

Designer: Jorge Montolio Conde

Document Date: 11/17/2015

Intended Level Delivery Date: 02/22/2015

Level Design Document: Rewind

LDD Confidential Unreal Engine 4

Jorge Montolio Page 41 of 101 6/1/2016

A. Document Revisions Table

Version Description Requestor Date

1.0 Initial Document Wendy Despain 11/01/2015

LDD Confidential Unreal Engine 4

Jorge Montolio Page 42 of 101 6/1/2016

B. TABLE OF CONTENTS

Table of Contents .. 42

Table of Figures .. 44

Quick Summary .. 45

Hook(s) 45

Level goals 45

Gameplay Minute 45

Gameplay details ... 49

The Rewinder 49

Interactions 51

Gameplay Example 51

Narrative elements .. 53

Memories 53

Main character comments 54

Consoles 55

Logs 56

The GUI .. 57

HUD 57

Inventory 60

Notebook 61

Notes... 63

Logs .. 64

Timeline ... 67

Dialog and player thoughts 69

Story Summary ... 70

Backstory 70

Levels story 70

Aftermath 71

Characters 72

Level Summary 73

Campaign 73

Context ... 73

Backstory .. 73

Aftermath ... 73

Objective(s) 73

Overview Maps 74

Chronologically ordered events - Player .. 74

Chronologically ordered events – Dr. Anderson .. 76

Chronologically ordered events – Dr. Cook... 77

LDD Confidential Unreal Engine 4

Jorge Montolio Page 43 of 101 6/1/2016

Level Details ... 78

Level Areas 78

Alarm levels 78

Detailed Walkthrough 79

Area 1: Entrance area ... 79

Area 2: The laboratory ... 88

Area 3: The Incineration room and the dormitories ... 94

References ... 101

LDD Confidential Unreal Engine 4

Jorge Montolio Page 44 of 101 6/1/2016

C. Table of Figures

Figure 1: Rewind concept [1] ... 40

Figure 2: An icon (bottom right) shows up every time players are in front of a valid DNA

sample. .. 50

Figure 3: A post-process effects helps players differentiate between memories and the real world.

... 53

Figure 4: Players learn about the main character's personality through his comments. 54

Figure 5: A new screen opens when players interact with a console. ... 55

Figure 6: Screen that opens when players interact with a log. .. 56

Figure 7: HUD concept ... 57

Figure 8: Real world HUD .. 58

Figure 9: Memory HUD.. 59

Figure 10: The Notebook gives players access to three submenus ... 61

Figure 11: Menu hierarchy in Rewind. ... 62

Figure 12: The main character takes notes about his discoveries. .. 63

Figure 13: Initial concept for the log menu. ... 64

Figure 14: Final iteration of the log menu, as it is in game. ... 65

Figure 15: Players can read a log again by clicking on the buttons on the left sidebar. 66

Figure 16: In the initial concept, the timeline was part of the HUD. .. 67

Figure 17: Timeline menu in the final game. .. 68

Figure 18: Incinerator concept .. 71

Figure 19: Chronological events for the player .. 74

Figure 20: Chronological events for Dr. Anderson .. 76

Figure 21: Chronological events for Dr. Cook ... 77

Figure 22: Area breakdown of the level ... 78

Figure 23: First iteration in Area 1 (Investigator) ... 79

Figure 24: Second iteration in Area 1 (Dr. Anderson 7pm) ... 81

Figure 25: Third iteration in Area 1 (Investigator) ... 82

Figure 26: Fourth iteration in Area 1 (Dr. Anderson 6pm-7pm) .. 84

Figure 27: Fifth iteration in Area 1 (Investigator) .. 86

Figure 28: First iteration in Area 2 (Investigator) ... 88

Figure 29: Second iteration in Area 2 (Dr. Anderson 5pm-6pm) ... 90

Figure 30: Third iteration in Area 2 (Investigator) ... 92

Figure 31: First iteration in Area 3 (Dr. Anderson 3pm-6pm) ... 94

Figure 32: Second iteration in Area 3 (Investigator) .. 96

Figure 33: Third iteration in Area 3 (Dr. Cook 9am-10am) ... 98

Figure 34: Fourth iteration in Area 3 (Investigator) ... 100

LDD Confidential Unreal Engine 4

Jorge Montolio Page 45 of 101 6/1/2016

D. Quick Summary
 “Rewind” is a single player, point-and-click adventure level for Unreal Engine 4. “Rewind”

follows the investigation of a 25th century detective, Dale Cooper, as he arrives at a laboratory

where a terrible accident has happened. To help him, Dale has a special tool known as the

“Rewinder”, a device that allows him to enter people’s memories after analyzing their DNA. By

using the rewinder, Cooper is able to witness the event of that day through the eyes of the

laboratory’s scientists.

“Rewind” is a unique point-and-click adventure in that players witness the events of the

day out of order, from the end of the day to the beginning. In addition to using the Rewinder,

players can pick up keycards and other objects that help them progress through the facilities, as

well as interact with some of the malfunctioning laboratory’s equipment. By using the

“Rewinder”, gathering clues, and picking up objects, players need to enter the dark rooms of the

laboratory, and shed light on the mysterious events that led to the current state of the facility.

1) Hook(s)

 Using the Rewinder to control different characters.

 Using the Rewinder to enter other characters’ minds and see the past through their eyes.

 Seeing the laboratory at different points in time.

 Seeing the end of a scene before seeing the beginning. In the laboratory, players find a

different scenario in each area, and they must see the past in order to understand what has

happened in that part of the laboratory.

2) Level goals

 Find out what happened in the laboratory.

 Find out who made the emergency call and why.

 Save any laboratory personnel who remains in the facilities.

3) Gameplay Minute

Players find a hallway
filled with toxic gas. They
need a gas mask to get
through it.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 46 of 101 6/1/2016

Players find a container
with gas masks inside.

Close to the container
there is a console that
players need to use to
open the gas mask
containers.

To activate the console,
players need the name of
one of the laboratory’s
scientists.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 47 of 101 6/1/2016

Players look around the
room and find the dead
body of one of the
scientists.

Players use the Rewinder
to enter the character’s
memory.

Once inside the
character’s memory,
players find out about
the character’s name,
thanks to the DNA
analysis.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 48 of 101 6/1/2016

Players go back to the
real world after the
memory finishes.

Players use the
character’s name on the
console.

The mask container
opens after players
introduce the name.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 49 of 101 6/1/2016

Players pick up the mask.

Players use the mask to
progress to the next area.

E. Gameplay details

1) The Rewinder

 The main mechanic of the level is “rewinding”. Whenever players find another character’s DNA,

they can enter his memories and see the past through their eyes. For example, if the player collects

DNA that Dr. Cook left after drinking from a cup at 9am, the player can then see the past through

Dr. Cook’s eyes. The memory starts sometime before Dr. Cook used that cup, and ends right when

he started drinking from the cup. DNA samples have particle effects around them, to help players

identify them. In addition to the particles, an icon in the HUD pops up whenever players are

looking at a sample, reinforcing the visual feedback and letting them know that they can use the

“Rewinder”. Once this icon appears on the screen, players just need to left click with their mouse

to start the teleportation to the other character’s mind.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 50 of 101 6/1/2016

Figure 66: An icon (bottom right) shows up every time players are in front of a valid DNA sample.

 Inside a memory, the game functions exactly in the same way as if they were in the present. A

light overlay tells player that they are inside some else’s memory, and the HUD updates with the

name of the character that they are controlling, as well as the time of day that they are seeing in

the memory.

When players are inside a character’s memory, they are taking the role of that character for

the duration of the memory. However, memories are in no way a time travel, and players cannot

change any present or future events while they are in them. Memories serve merely as a way to

tell the story to the player through another character’s perspective. Once players enter a memory,

they stay in the memory until the memory finishes (i.e. they reach the part of the story where they

need to go back to the present). In cases when players are under extreme circumstances (running

away from a fire, trying to get out of a room that is about to explode, etc.), dying sends players

back to the beginning of the memory. At the end of the memory, a simple fade to black and a

“Losing connection to memory” message on the HUD, tells players that they are about to return to

their original body.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 51 of 101 6/1/2016

2) Interactions

The level is a point and click adventure, where players progress by exploring the

environment. Players can interact with environment objects, collect items, and use the items in the

right places in order to unlock new areas. Sometimes, players have to interact with consoles in

order to progress by introducing a password or a character’s name to activate the console.

The way that players can interact with the world are:

Keys Action Description

WASD Walk
Players can walk around the level with the WASD keys.
Jumping and sprinting are not available in Rewind.

Left Mouse Button

Observe
Players can observe any objects with a highlight around
them. Observing an object shows a comment by the main
character about that object.

Use

Players can use some objects in the environment, such as
consoles or doors. For those objects, using the left-mouse
buttons triggers a reaction in the object, along with a
comment from the main character.

Pick-up
When players interact with a pickup item, the main
character picks up the item. The item goes to the players’
inventory automatically.

Opening
console
screens

When players interact with certain consoles, an auxiliary
screen opens. This screens may be purely informative, or
they may ask players for a password or code.

R Rewind

When players are in front of a DNA sample, an icon on the
HUD tells them that they can use the Rewinder. If players
press R while the icon is on the HUD, they automatically
enter the character’s memory.

I Inventory Players can open the inventory by pressing “I”

N Notebook
Players can open the notebook by pressing “N”. The
Notebook is a menu that contains all of the narrative-
relevant information in the level (see Notebook section).

1-4
Using
items

Players can use items from their inventory by pressing a
number from 1 to 4. Players can see the items assigned to
each number in the HUD. They can also change these
numbers by entering the inventory.

3) Gameplay Example

 The gameplay follows a simple pattern, where players switch between the present and other

characters’ memories. From the present, players can explore and find DNA, which they can use to

enter a memory and see the past. Once in the memory, players can gather information (such as a

key code or a name), that allows them to progress further once they go back to the present.

 The following is an example gameplay scenario for the game:

LDD Confidential Unreal Engine 4

Jorge Montolio Page 52 of 101 6/1/2016

 Players need to access the lower laboratory, but there is no electricity in the elevator that

connects to the lower laboratory’s floor.

 Players find some of Dr. Anderson’s DNA and enter his memories.

 Inside Dr. Anderson’s memory, players see Dr. Anderson entering a code in a console.

With this code, he is able to turn the electricity off in the facility.

 Players go back to the present and use that code on the console to turn electricity back on.

 Players use the elevator and access the next area.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 53 of 101 6/1/2016

F. Narrative elements

1) Memories

Memories are the main narrative element in Rewind. Every time players find another

character’s DNA, they can use the Rewinder to enter the character’s memories. Inside the

memories, players play as that character, which gives them a unique perspective of the

character’s actions during that day. Once players reach the moment in time when the character

lost the DNA, the memory ends and players go back to the real world.

Memories are both a narrative element and a gameplay element. Although they give

players more insight into the level events, they also provide information that helps players

progress through the level.

Figure 67: A post-process effects helps players differentiate between memories and the real world.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 54 of 101 6/1/2016

2) Main character comments

 In Rewind, the main character makes comments every time players interact with an object.

Since players spend most of the level alone, these comments are the only way of conveying the

main character’s personality and thoughts to players.

Figure 68: Players learn about the main character's personality through his comments.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 55 of 101 6/1/2016

3) Consoles

Players can find several consoles inside the laboratory. All of the consoles give players

information about the live inside the laboratory, the laboratory personnel, or the laboratory’s

protocols. The consoles are a way of telling the laboratory’s backstory to players, since most of

the secondary characters in Rewind are dead or missing.

To interact with a console, players can just click on it. Clicking on it opens a new screen,

where players can see the console’s information. In some cases, players may have interact with the

console by entering a password or a code, that in turn activates some mechanism inside the room.

Figure 69: A new screen opens when players interact with a console.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 56 of 101 6/1/2016

4) Logs

In Rewind, players can find text logs written by the laboratory’s scientist and other

laboratory personnel. Some of these logs are part of the scientists’ diaries, while some others are

just scientific notes or comments about a specific research. The logs purpose is to tell players about

the story of the laboratory’s scientist, as well as their personality and motivations. Since players

only gets to meet one of Rewind’s secondary characters in person, logs are the only way for players

to learn about all of the other secondary characters.

Once players interact with a log, an auxiliary screen opens, showing the log contents. After

players close this screen, the log automatically goes to their Notebook, so that players can look at

the log contents later.

Figure 70: Screen that opens when players interact with a log.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 57 of 101 6/1/2016

G. The GUI

1) HUD

 The game’s constantly displays essential information through the HUD, which is always visible

on screen. The following captions shows an early version of the HUD:

Figure 71: HUD concept

The final version of the HUD has a simpler layout, with only the essential information so that

the HUD doesn’t take a significant portion of the screen.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 58 of 101 6/1/2016

Figure 72: Real world HUD

The HUD always contains the following information:

 Item Bar

Four items from the inventory. Players can get into the inventory and change these four

items at any time. New items go directly to the item bar, if there is a free spot. A small blue

box also reminds players that they can open the inventory by pressing “I”.

 A “Rewinder” icon, along with the key to press to use the “Rewinder”.

 A Notebook icon, along with the key to press to open the Notebook.

The HUD changes when players enter a memory. In memories, players can not use items, the

“Rewinder”, or the Notebook, so the HUD becomes a lot simpler:

LDD Confidential Unreal Engine 4

Jorge Montolio Page 59 of 101 6/1/2016

Figure 73: Memory HUD

Inside a memory, the HUD only displays the name of the character whose memory players

have entered, and the time of day when that memory happened.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 60 of 101 6/1/2016

2) Inventory

 Players can open the inventory at any time by pressing I. The inventory gives players access to

the game’s items, as well as to the “Rewinder” and the Notebook (although players can also access

the “Rewinder” and the Notebook from the HUD).

Figure 74: Rewind's Inventory

From the inventory, players can move items around by clicking and dragging them with

their mouse. Players can also click on an item to see the item’s name and a description of the item.

Double clicking on an item or on the “Rewinder”, closes the inventory and automatically uses the

item/”Rewinder” in the world. If players double click on the Notebook, the Notebook menu opens.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 61 of 101 6/1/2016

3) Notebook

The Notebook is a menu that contains all of the narrative-relevant information that players

gathered throughout the level. From the Notebook, players can access text logs, the main

character’s notes, as well as a timeline of the level’s events. Players can open the Notebook from

the HUD by pressing N, or from the inventory by double clicking on it.

The Notebook contains three submenus, each with a different purpose:

 The Note Menu, where the main character takes notes about his observations while

exploring the level.

 The Log Menu, where players can access text logs after they collect them in the level.

 The Timeline, that displays the level events in chronological order.

Figure 75: The Notebook gives players access to three submenus

LDD Confidential Unreal Engine 4

Jorge Montolio Page 62 of 101 6/1/2016

Inventory

Notebook

HUD

Notes Logs Timeline

Figure 76: Menu hierarchy in Rewind.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 63 of 101 6/1/2016

a) Notes

Every time players find out about an important piece of information, the main character

writes it down in the Note Menu. To inform players about the update in the menu, the main

character makes a comment every time he adds a note. For instance, after discovering a character’s

personal keycode, the main character may say “I better write down this code in my notes, so that

I don’t forget”.

Figure 77: The main character takes notes about his discoveries.

 The Note menu helps player remember key pieces of information, some of them gameplay-

relevant, such as passwords and codes.

 The Note menu can have as many pages as needed, and as soon as a page fills out, another page

starts. Players can navigate through the pages by using two green arrow buttons on the side of each

page, which send them to the previous or next page in the Note menu.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 64 of 101 6/1/2016

b) Logs

 In the game, players can collect logs written by other characters. Some logs contain codes for

doors and machinery, so it is important for players to be able to go back and review the logs that

they have gathered throughout the level. All of the logs that players pick up during the level, go to

the Log Menu. Players can access the Log Menu from the Notebook, and review any of the logs

in their possession.

Figure 78: Initial concept for the log menu.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 65 of 101 6/1/2016

Figure 79: Final iteration of the log menu, as it is in game.

Once players click on one of the buttons on the left sidebar, the information contained in

that specific log shows up on the screen. The buttons on the left sidebar have different colors based

on the character that wrote the log:

Background Color Character

Pink Eve

Green Dr. Cook

Blue Dr. Anderson

Grey Others

LDD Confidential Unreal Engine 4

Jorge Montolio Page 66 of 101 6/1/2016

Figure 80: Players can read a log again by clicking on the buttons on the left sidebar.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 67 of 101 6/1/2016

c) Timeline

 Players witness the events of the level out of order, which forces them to chronologically

organize the level events in their mind. To help them with that, Rewind has the Timeline Menu,

which shows them the events of the day chronologically ordered. Every time the player witnesses

and important story moment, the event goes to the timeline, so that players can later look at the

levels’ story as a whole. Like it happens with the Log Menu and the Note Menu, the Timeline

Menu is a purely informative menu. Players can access the Timeline from the Notebook (see

Notebook section).

Figure 81: In the initial concept, the timeline was part of the HUD.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 68 of 101 6/1/2016

Figure 82: Timeline menu in the final game.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 69 of 101 6/1/2016

4) Dialog and player thoughts

 Because of the nature of point-and-click adventures, the main character constantly makes

comments about the environment, or the objects he picks up during the level. These comments

appear on the screen in the form of subtitles, which stay on the screen for a few seconds before

disappearing.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 70 of 101 6/1/2016

H. Story Summary

1) Backstory

 The level takes place in the year 2500, where it has become common for all investigators to use

the devices known as “Rewinders”. With the Rewinders, investigators can take DNA samples, and

the Rewinder instantly lets them see the past, through the eyes of the person who’s DNA they have

analyzed.

 In the level, players take the role of one of these investigators, who is attending an emergency

call coming from a research laboratory. The laboratory, which belongs to the corporation Meta

Corp, stopped all communications at noon on December 21st 2500, and sent an emergency signal

eight hours later. The players’ goal is to find out what happened in the laboratory, to track the

origin of the call, and to rescue any possible survivors that might still be in the laboratory.

2) Levels story

 Upon entering the facility, the investigator realizes that something terrible has happened. All

lights in the laboratory are off, and there seems to be some kind of toxin in the air. Upon looking

into a room, the investigator finds the body of Dr. Anderson, one of the laboratory’s scientists.

After making his way through the debris, the investigator manages to reach the scientist body and

collect some DNA, which allows him to see the past through the scientist’s eyes. Thanks to his

vision, the player discovers that a “Purge” protocol started in the laboratory two hours before the

call. For some unknown reason, Dr. Anderson shut down all electrical system in the laboratory

right before he died, trapping the other scientist in the facility, Dr. Cook.

 Thanks to Dr. Anderson’s key code, the player gets to venture further in the laboratory, where

he finds Dr. Cook, who is alive and trapped in the Main Control room. Dr. Cook assures the player

that he does not know what triggered the “Purge” protocol, and asks the investigator to free him.

In order to do that, the player needs to access Dr. Cook’s room, get his key card, and give it to

him, so that Dr. Cook can restore electricity to the facilities from the control room. Although the

investigator believes Dr. Cook at first, he soon starts suspecting that the doctor is not telling the

truth. As the investigator enters more visions, and sees the day through Dr. Anderson’s eyes, he

starts to confirm his suspicions. At the same time, the player finds out more about that experiments

that were taking place in the laboratory. In a vision that brings him to midday, the player takes the

role of Dr. Anderson as he is incinerating some kind of human-like being. More research brings

the investigator to the conclusion that the laboratory was specializing in creating human-like AIs,

which the scientists sacrificed if the AIs did not meet certain standards.

 The level ends when the player finds the dead body of Dr. Cook, which makes him realize that

there is an imposter in the Main Control Room. Using Dr. Crook’s DNA, the investigator is finally

able to witness the events in the morning of the tragedy. Seeing the past through Dr. Crook’s eyes,

the player discovers that Dr. Cook had developed feelings for Eve, one of the AIs in the laboratory.

Knowing that the scientists were about to incinerate her, Eve tricked Dr. Cook into freeing her in

the morning of December 20th. After Dr. Cook freed her, she immediately killed him, and

proceeded to release toxic gases in the lab, with the goal of killing as many of her captors as

possible. However, Dr. Anderson turned off the electricity in the laboratory before the AI could

escape, trapping her inside the lab.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 71 of 101 6/1/2016

Figure 83: Incinerator concept

3) Aftermath

 The player finally accesses the Control Room, where Eve is. There, she finds Eve bleeding and

almost unconscious. Eve is about to die, and the Investigator asks her about her reasons behind

the killing of the scientists. Eve gives the doctor her reasons and ends the conversation

wondering about the fairness of her confinement and final fate.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 72 of 101 6/1/2016

4) Characters

Character Description

Agent Dale Cooper

The main character. He is a detective and his
company has sent him to investigate the
events in the laboratory, which led to the
emergency call.

Dr. Anderson

One of the scientists in the laboratory, in
charge of the engineering work. He considers
the AIs to be mere research subjects, and is
incapable of seeing them as human. Because
of that, he clashes frequently with Dr. Cook’s
humanitarian views.

Dr. Cook

An expert in bioethics, Dr. Cook makes sure
that the experiments in the laboratory meet
a minimum ethical standard. After some time
in the laboratory, he starts to feel bad for the
AI’s, and falls in love with one of them known
as Eve. His views lead to frequent fights with
Dr. Anderson.

Eve

One of the AIs created by Dr. Anderson. She
prides herself as being the best AI created in
the laboratory. When she discovers that Dr.
Anderson is going to incinerate her, she
cannot deal with the rejection, and tricks Dr.
Cook to free her. She then proceeds to kill all
of the scientists and AIs on site by starting
the Purge Protocol.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 73 of 101 6/1/2016

J. Level Summary

1) Campaign

a) Context

Rewind is a level that takes place in the future, where physic detectives can access victim’s

memories through their DNA. In the level, players take the role of Dale Cooper, who is

investigating a mysterious SOS call that came from a secluded research laboratory. Upon arrival,

Dale finds the body of one of the lab’s scientists, and realizes that a major accident has happened

in the facility. His mission then becomes to find out what has happened, and to rescue anyone who

might still be inside.

b) Backstory

The goal of the laboratory is to explore the creation of artificially made human-like droids

of high intelligence, which can mimic human thought process and that have feelings of their own.

In the laboratory, scientists create AIs every month, test them, and destroy them if they do not pass

certain mental-health and logic tests. During the process of creating the ultimate AI, Dr. Cook, one

of the scientists, starts feeling sympathy for the poor artificial beings. One day the oldest AI, Eve,

fails one of the tests and she is subsequently marked for incineration. Eve then quickly becomes

aware of her imminent death, and tricks Dr. Cook into freeing her. After hiding Dr. Cook’s body

inside her capsule, Eve proceeds to kill everyone inside the laboratory by starting an emergency

Purge protocol, hence taking revenge on the people who decided she was not a good enough AI.

c) Aftermath

 Dale Cooper finds out that the person inside the main laboratory is Eve. He finally gets to the

main control room, but it is too late and Eve is already dying. Dale has a conversation with Eve

before she dies, where she explains the reasons for her actions. Dale leaves the facility wondering

about the legitimacy of the lab’s experiments, and about how they drove a smart artificial being

into insanity.

2) Objective(s)

 Main goal:

o Find out the origin of the SOS message

o Rescue any scientists locked in the facility

o Player fails if he is dies as a result of the machinery or the environment

 Secondary goal: Access the main laboratory

o Investigate Dr. Anderson’s death

o Restore electricity to the laboratory and Incinerator

o Reach the laboratory

 Secondary goal: Investigate the facility’s activities

o Find out what kind of experiments took place in the facility

o Find out the cause of the damage in the laboratory

o Find out what happened to Dr. Cook

 Secondary goal: Free the scientist inside the main control room

LDD Confidential Unreal Engine 4

Jorge Montolio Page 74 of 101 6/1/2016

o Obtain Dr. Cook’s code to open the door to the room

o Free the scientist inside the main control room

K. Overview Maps

1) Chronologically ordered events - Player

Figure 84: Chronological events for the player

1. The player arrives at the laboratory

2. The player gets a tool that is laying on top of a table

3. The player breaks a window with the tool. He does not fit through the window but he is able to gather

Dr. Anderson’s DNA. The player enters the first vision, which shows Dr. Anderson dying.

4. The player gets the key to the elevator

5. The player uses the elevator to reach the top window of the control room. The player enters the room

through the window and is able to get more DNA from Dr. Anderson. The player enters the second

vision, and after coming back, he reactivates the electricity in the laboratory.

6. The player reaches the bottom floor by using the elevator

7. The player talks to Eve, who tells him that he needs to find the code to open the control room. The

code should be in the dormitories, in one of the rooms.

8. The player finds more of Dr. Anderson’s DNA and enters the third vision, were Dr. Anderson is

getting out of the laboratory and trying to reach the top floor.

9. The player reactivates the electricity in the Incinerator room, and enters the room.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 75 of 101 6/1/2016

10. The player finds DNA in a cup of coffee, and another vision begins. This time, the player sees Dr.

Anderson waking up in the morning and starting his incineration routine. Suddenly, the “Purge”

protocol alarms go off.

11. The player enters Dr. Cook’s room and finds the key to Eve’s capsule.

12. The player enters Eve’s capsule and sees Dr. Cook’s body. He enters the last vision, where he sees

Dr. Cook freeing Eve earlier in the day.

13. The player confronts Eve, who explains her motivation behind the killing. She then dies in front of

Dale.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 76 of 101 6/1/2016

2) Chronologically ordered events – Dr. Anderson

Figure 85: Chronological events for Dr. Anderson

1. Dr. Anderson wakes up

2. Dr. Anderson starts working on the incinerations for the day

3. When Dr. Anderson is about to incinerate Eve, he finds out that she is not in her capsule. Suddenly,

the “Purge” protocol alarms go off.

4. Dr. Anderson destroys the Incinerator room’s door, by making the Incinerator’s laser drop, and then

pointing it towards the door.

5. Dr. Anderson reaches the elevator to the top floor

6. Dr. Anderson gets a metal bar from the room

7. Dr. Anderson uses the metal bar to keep the door locked and he reaches the Emergency Control room

8. Dr. Anderson turns off the electricity in the laboratory, the Incinerator, and the Main Control Room.

9. Dr. Anderson dies in the small room close to the Emergency Control Room.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 77 of 101 6/1/2016

3) Chronologically ordered events – Dr. Cook

Figure 86: Chronological events for Dr. Cook

1. Dr. Cook wakes up and goes to Eve’s pod.

2. Eve convinces him to open the pod, and kills Dr. Cook when he opens the door.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 78 of 101 6/1/2016

L. Level Details

1) Level Areas

 The level has different areas, and in order to access them the player needs key codes, which he gets

throughout the level. The player gets some key codes by collecting a key card, or by seeing the code numbers

in a vision.

Figure 87: Area breakdown of the level

2) Alarm levels
 The laboratory has three different kinds of warnings and alarms, which play through the speakers when

something happens in the laboratory:

 Blue alarm: they are warnings, usually due to system malfunctions. Do not require an immediate

response.

 Orange alarm: there is potential danger to the people inside the laboratory. Immediate response is

required.

 Red alarm: emergency, laboratory evacuation is required.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 79 of 101 6/1/2016

M. Detailed Walkthrough

1) Area 1: Entrance area

a) First iteration: Investigator

Figure 88: First iteration in Area 1 (Investigator)

LDD Confidential Unreal Engine 4

Jorge Montolio Page 80 of 101 6/1/2016

 Initial Level condition

o The player has just arrived at the facility

o A locked door (blue in image) is blocking the player’s path

o The player can see the dead body of Dr. Anderson through a window.

 Story

o The player finds out that Dr. Anderson is dead

 Goals

o Open the entrance door

 New mechanics

o Using the rewinder for the first time

o Picking up an object

o Using an object

o Using a code seen in a vision

 Gameplay/Story

1. Players go to a table at the end of the hallway and pick up the crowbar

2. Players use the crowbar on the window, breaking it

3. Players have now access to Dr. Anderson’s body. They use the rewinder to enter the first vision

of the level.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 81 of 101 6/1/2016

b) Second iteration: First vision, Dr. Anderson (7pm)

Figure 89: Second iteration in Area 1 (Dr. Anderson 7pm)

 Initial Level condition

o Alarms in the laboratory warn the player about the high levels of toxicity in the air.

o In this iteration, players spawn as Dr. Anderson as he is laying on the ground, unable to move.

He has managed to start the shutting down sequence, but the toxic gases have entered his body

and he is about to die. Due to the toxic gases, he cannot move, so players can only look around.

 Story

o The player receives sporadic radio transmissions from Eve throughout this iteration. They are

simply words of anger (“What have you done?”, “I will get out of here!”, etc.). The radio

transmissions never mention the name Eve.

 Goals

LDD Confidential Unreal Engine 4

Jorge Montolio Page 82 of 101 6/1/2016

o Read the entrance code written on the card that lays by Dr. Anderson. The card contains the

code to open the door to the entrance area.

 New mechanics

o Entering a vision for the first time

o Using information from a vision in order to progress in the present

o Using a code for the first time

 Gameplay/Story

4. Players start the vision as Dr. Anderson, but they cannot move. They look around and see a code

card. Upon reading it, they find out that it contains the code to open the entrance area’s door. Dr.

Anderson dies. As his eyes close, he can see the lights in the laboratory turning off.

c) Third iteration: Investigator

Figure 90: Third iteration in Area 1 (Investigator)

LDD Confidential Unreal Engine 4

Jorge Montolio Page 83 of 101 6/1/2016

 Initial Level condition

o Players enter the entrance area. The corridor has an elevator, but it requires a special key to

function. When the elevator is working, it can go down one floor or up one floor. The bottom

floor contains a door that does not open, because the electricity in the laboratory is down. The

elevator gets stuck when it tries to reach the upper floor.

o Only emergency lighting is working in the facility, illuminating the player’s critical path.

 Story

o Players learn about Dr. Anderson and Dr. Cook’s background through some commemorative

plaques in the hallway of the entrance area.

o Players get a hint about the nature of the laboratory’s experiments.

 New mechanics

o Review of previously learned mechanics

 Goals

o Get in the control room, where Dr. Anderson’s body is.

 Gameplay

5. Players read the two plaques that talk about the two scientists in the laboratory: Dr. Anderson and

Dr. Cook. Players can get information regarding the scientist’s degrees: neuroscience and

computer engineering. The plaques also hints the nature of the laboratory’s experiments.

6. Players go to the storage room. There they can try to open the “Emergency tools” locker. The

toolbox requires the name of the person who is going to borrow a tool, for logging purposes. It

only accepts the names of the scientists in the laboratory. Players enter either Dr. Anderson or Dr.

Adam’s name (which they have read in the plaques), and they get the elevator’s emergency key.

7. Players get into the elevator and go up. The elevator malfunctions and stops in front of a window.

Players break the window using the crowbar and enter the control room.

8. Players gather some blood with the Rewinder, and enter the second vision as Dr. Anderson.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 84 of 101 6/1/2016

d) Fourth iteration: Dr. Anderson (6pm-7pm)

Figure 91: Fourth iteration in Area 1 (Dr. Anderson 6pm-7pm)

 Initial Level Condition

o Red alarms in the laboratory warn the player about the recent release of toxic gas in the

facilities.

o Players move difficultly due to the toxic gas affecting their senses.

 Story

o Players wake up as Dr. Anderson, as he is leaving the elevator. Eve has already released the

toxic gases and Dr. Anderson is having trouble breathing. He walks slowly.

o Players receive radio transmission throughout the whole level, coming from Eve.

o She knows that Dr. Anderson is trying to shut down the lab, and she is aggressively trying to

convince him not to do it.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 85 of 101 6/1/2016

 Goals

o Shutdown the electricity in the laboratory and trap Eve inside.

o New mechanics

o Review of vision’s gameplay

 Gameplay

9. Players start playing as Dr. Benjamin. He is having trouble moving. Players enter the storage

room, and grab a metal bar.

10. Players press the button that opens the door and introduce their code.

11. The door malfunctions and starts opening and closing. Players put the metal bar between the door

panels, to hold it.

12. Players turn off electricity in the facility by introducing their code in the main console. Since

player’s don’t know the code, Dr. Anderson talks to himself and hints which numbers are the

correct ones:

a. “My code doesn’t start with a 2…”

b. “I’m feeling dizzy, was this number really a 3?”

13. Once they insert the code, players start losing consciousness and the vision ends.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 86 of 101 6/1/2016

e) Fifth iteration: Investigator

Figure 92: Fifth iteration in Area 1 (Investigator)

 Initial Level condition

o Nothing has changed since iteration 3

 Goals

o Restore electricity to the laboratory area

 New mechanics

o No new mechanics

 Gameplay

14. Players use the code that they saw in the vision to restore electricity to the laboratory. If the player

tries to restore electricity to the other areas, they receive a warning:

LDD Confidential Unreal Engine 4

Jorge Montolio Page 87 of 101 6/1/2016

 “Connection to Incinerator lost, please restore electricity from laboratory”

 “Connection to main control room lost, please use emergency protocol to restore electricity”

15. Players get into the elevator and go to the bottom floor. The electricity is back, so the door opens

and they are able to access the laboratory.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 88 of 101 6/1/2016

2) Area 2: The laboratory

a) First iteration: Investigator

Figure 93: First iteration in Area 2 (Investigator)

 Initial Level condition

o The player reaches the entrance corridor to the laboratory, but fire blocks his path. The fire

originated from the explosion created by Dr. Anderson hours before.

o Players see the Main Control room to the side of the corridor is the main control room. Eve is

inside this room, and she calls the player over.

o Area 3 (the incinerator) is in darkness, so the player can enter it but he cannot perform any actions

while in it.

o The subject capsule on the left (see map) is missing a battery

 Goals

o Talk to Eve in front of the Main Control room

o Keep exploring and find out where Dr. Cook is

o Reach the scientists’ dormitories

LDD Confidential Unreal Engine 4

Jorge Montolio Page 89 of 101 6/1/2016

 Story

o Subject capsules: The laboratory contains the “Subject capsules”. These are the capsules where

the scientists keep the AIs and do research on them. Every month, the AIs have to pass certain

tests. If they fail the tests, the scientists send the AIs to the incineration room.

 The player cannot see what’s inside the capsules, they are opaque.

 One of the capsules is the one where Eve used to be.

 The other capsule contains the body of Dr. Cook, but the player cannot see it yet.

o Meet Eve: the player meets Eve for the first time. She is inside the control room and introduces

herself as Dr. Cook. The player cannot see inside the room so he falls for Eve’s lie. Eve then tells

the player that she was the one that made the distress call, and that she got trapped inside the

control room when the electricity went down.

o Receive a new goal: Eve asks the player to find Dr. Cook’s key card. With Dr. Cook and Dr.

Anderson’s key cards, Eve can restore electricity to the whole facility. Eve tells the player that

her card (Dr. Cook’s card) is in the dormitories.

o AI tests: During this iteration, the player finds notes that refer to the tests that the scientists were

carrying out on the AIs. Most of these tests are questions that the scientists asked the AIs, to

decide if the AIs should go to the incinerator or not.

o Experiments with live beings: The player also sees the pods where the scientists kept the AIs.

This is the iteration where players start to figure out that the scientists were experimenting with

some kind of living beings.

 New mechanics

o Put down fire

 Gameplay

1. A fire is blocking the player’s path, so the only thing he can do is to talk to Eve. The player talks

to Eve, who asks him to find the code to restore electricity in the control room. He gives him the

key to the maintenance room.

2. The player opens the maintenance room, where he sees a fire extinguisher.

3. The player sees a note close to the fire extinguisher. The note mentions the Incineration room,

and reminds the scientists that it is important to be alert because of possible fires. This is the first

hint towards the subject incineration protocol.

4. The player gets the fire extinguisher.

5. The player puts down the fire using the fire extinguisher.

6. The player enters the laboratory. In the window between the laboratory and the incinerator, the

player finds some of Dr. Anderson’s DNA in the form of sweat. By using the Rewinder, the player

enters another vision that shows him Dr. Anderson’s past.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 90 of 101 6/1/2016

b) Second iteration: Dr. Anderson 5pm-6pm

Figure 94: Second iteration in Area 2 (Dr. Anderson 5pm-6pm)

 Initial Level condition

o The vision starts right before Dr. Anderson blows up the door using the Incinerator

o The door’s explosion creates a fire that hurts Dr. Anderson as he is exiting. This is the fire that

the player just put down.

o Orange alarm at the beginning of the level: “ALARM: Purge protocol activated. Release of

toxic gases imminent”

o After Dr. Anderson exits the laboratory doors, the toxic gases are released, and the alarm

changes to a red alarm “ALARM: Toxic gases released. Evacuate immediately.”

 Goals

o Dr. Anderson is trying to get to the “Emergency Control Room” on the top floor to shut down

the electricity in the laboratory.

 Story

LDD Confidential Unreal Engine 4

Jorge Montolio Page 91 of 101 6/1/2016

o Backstory: Dr. Anderson starts incinerating some of the subjects, but halfway through his work,

the orange “Purge” alarms go off. Dr. Anderson, worrying for his life, destroys the Incineration

room’s door using the Incinerator.

o Start: The vision starts as Dr. Anderson hides behind a pile of boxes, while waiting for the

incinerator to destroy the door.

 New mechanics

o No new mechanics

 Gameplay

7. The player starts hiding behind a group of boxes.

8. The incinerator gun has dropped from the ceiling, and it is now laying on the floor, pointing at

the door. As soon as players get leave their hiding place, the incinerator activates and destroys

the Incineration Room’s door.

9. The door explodes and debris covers the room. The explosion results in a fire around the door

area.

10. Players go through the door, and fire burns them in the process. Their walking becomes more

difficult after this point.

11. Players use the laboratory’s key code to open the laboratory’s door and get out. Like in Area 1,

Dr. Anderson hints the number to the players. Players have to use this number after the vision.

12. Players get to the elevator and the vision ends.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 92 of 101 6/1/2016

c) Third iteration: Investigator

Figure 95: Third iteration in Area 2 (Investigator)

 Initial Level condition

o Same as iteration one.

 Goals

o The player is trying to access the dormitories. In order to get to the dormitories, he needs to go

through the incinerator room, but the room is in darkness.

o The player needs to restore electricity to the Incineration Room, so that he can then access the

dormitories.

 Story

o Players find some of the AIs’ tests for the first time. Players start to wonder if the “subjects” are

indeed intelligent beings, since the scientists were using personality and logic tests on them.

 Gameplay

13. The player wakes up after completing the previous vision.

14. The players finds a note on the billboard:

LDD Confidential Unreal Engine 4

Jorge Montolio Page 93 of 101 6/1/2016

 “Due to safety reasons, manual activation of the incineration room has been disabled. The

Incineration Room will be activated automatically if an urgent incineration is required.”

15. The player searches in the desk’s drawers. There, he finds one of the tests that the scientists

usually use on the AIs. The scientists use these tests to select the AIs that need to go to the

Incinerator, because of personality/logic malfunctions. Along with the tests’ questions, the

document indicates the adequate action to take if the scientists receives a certain answer:

 Question 1: Does the subject look happy/sad/confused?

 Question 2: Is the subject responsive to exterior stimuli, including light and sound?

 Question 3: On a scale from one to ten, what is the subject’s reaction when exposed to

constant auditory stimulation for more than one hour?

 ….

 Result evaluation 1: If all questions received a negative answer, imminent incineration

required. Emergency protocol activates.

 Evaluation result 2: If 50 questions received a negative answer, extensive tests needs to be

scheduled for the following day.

 …

16. The player uses the laboratory’s code to activate the testing console. He learned the code in the

previous vision, when he was playing as Dr. Anderson.

17. The player starts a test in one of the capsules. The capsule then prompts the Subject Evaluation

questions to the player, and the player has to introduce the AIs responses to those questions in

the system, as if he was a scientist evaluating an AI. If the player manages to obtain an

evaluation of “Imminent Incineration Required”, then the Incineration Room automatically

activates. The player has to look at the document that he found in 15, and answer the questions

so that he obtains an “Imminent Incineration Required” result.

18. The player introduces the right answers and the Incineration Room’s electricity comes back.

The player accesses the incineration room, where he then finds new DNA belonging to Dr.

Anderson. A new vision then starts.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 94 of 101 6/1/2016

3) Area 3: The Incineration room and the dormitories

a) First iteration: Dr. Anderson

Figure 96: First iteration in Area 3 (Dr. Anderson 3pm-6pm)

 Initial Level condition

o This iteration takes place in the morning, before Eve starts the “Purge” protocol.

o The door between the Incinerator room and the Laboratory is intact.

o A warning message can be heard through the speakers in the laboratory. It is not an emergency

but just a warning: “WARNING: purge protocol evaluation started.”

o Halfway through the iteration, the “Purge Protocol” starts, and the laboratory’s orange alarms go

off.

 Goals

o Goal before “Purge Protocol” starts: complete Dr. Anderson’s tasks for the day (incinerations)

o Goal after “Purge Protocol” starts: destroy door in order to reach the top floor and shutdown

electricity in the laboratory, preventing Eve from escaping.

 Story

LDD Confidential Unreal Engine 4

Jorge Montolio Page 95 of 101 6/1/2016

o The players take the role of Dr. Anderson at the beginning of the day. The blue alarm (a warning,

no imminent danger) is already on. When he wakes up, Eve has already killed Dr. Cook, and has

started her plan to kill the scientists. Dr. Anderson thinks that the blue alarm is just a system

malfunction, and starts carrying out his tasks for the day.

o When it is time to incinerate Eve’s capsule, he realizes it is empty, and then the orange alarm

(imminent danger) goes off. Dr. Anderson realizes that there is something wrong, and tries to get

out of the Incinerator in order to shut down the laboratory.

 Gameplay

19. The player starts and hears the warning (“Purge protocol assessment started”). The player talks to

himself and disregards the warning as a common malfunction.

20. The player goes on to check the tasks of the day. In the list, there are three pending incinerations:

 Eduard 1

 Eduard IV

 Eve

21. The player can use the radio to communicate with the control room and ask about the warning.

He does not receive any answer but still ignores the warning.

22. The player starts incinerating AIs. The player incinerates two of the capsules, but the system gives

him a “No subject in capsule” error when trying to incinerate Eve’s capsule.

23. The player looks in the capsule and realizes Eve is not there. The orange alarm goes off and the

player starts looking for a way out.

24. The player goes to Dr. Anderson’s room, where he finds a screwdriver.

25. The player also finds a note that talks about how the Incinerator Gun keeps falling to the ground.

The note mentions it was necessary to tighten the screws using the screwdriver, because when

they are loose, the Incinerator gun is prone to falling to the ground.

26. The player brings the Incinerator Gun closer to the top floor. He then goes to the top floor, and

from there he can reach the Incinerator Gun. The player uses the screwdriver to loosen the bolts

and let the gun drop to the floor.

27. The player activates the Incinerator Gun, which is pointing to the door.

28. The player hides behind the boxes and waits until the Incinerator goes off and destroys the door.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 96 of 101 6/1/2016

b) Second iteration: Investigator

Figure 97: Second iteration in Area 3 (Investigator)

 Initial Level condition

o Same as last player iteration

 Goals

o Getting the card for the Control Room in the dormitories

 Story

o The player finally has the code to enter the dormitories.

o When he enters Adam’s room, he does not find the Control Room card there, but he finds the key

that opens Eve’s capsule.

o When the player opens Eve’s capsule, he finds Dr. Cooks dead body, and enters the last vision of

the game.

 Gameplay

29. The player reaches Dr. Cook’s room and finds a note. In the note, Dr. Cook talks about his desire

to free Eve before they incinerate her on December 20th. Attached to the note, there is the key to

Eve’s capsule.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 97 of 101 6/1/2016

30. The player opens Eve’s capsule and finds Dr. Cook’s body inside. He soon realizes that the person

inside the control room is not Dr. Cook, but Eve. If the player tries to talk Eve then, he receives

no answer. Eve has been losing blood and she is almost unconscious.

31. The player uses Dr. Cooks DNA to enter the last vision of the level.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 98 of 101 6/1/2016

c) Third iteration: Dr. Cook

Figure 98: Third iteration in Area 3 (Dr. Cook 9am-10am)

 Initial Level condition

o The laboratory is completely functional.

o It is the early morning, before any of the events of the level happened.

o The player plays as Dr. Cook, as he wakes up.

 Goals

o Free Eve

 Story

o The iteration takes place at the very beginning of the day, when Dr. Cook wakes up and decides

to visit Eve one last time to say goodbye.

 Gameplay

32. Dr. Cook wakes up in his room, and puts the Control Room key card in his inventory. He also

Talks to himself:

 “I should go say goodbye. I can’t believe I will never see her again”

LDD Confidential Unreal Engine 4

Jorge Montolio Page 99 of 101 6/1/2016

 On his way to the capsule, the player can see more of Dr. Cook’s thoughts: “Is it really

necessary? I wonder how I would feel if I was one of them, and I knew what was going to

happen to me”. “She despises us…don’t those feelings prove that she is as human as we are?”

33. Dr. Cook reaches Eve’s capsule. For the first time, Eve is kind to him, and asks him to please let

her go. Dr. Cook, filling guilty, decides to free her. As he is opening Eve’s capsule, the screen

fades to black and the player hears the sound of blood splattering. The player returns to the present.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 100 of 101 6/1/2016

d) Fourth iteration: Investigator

Figure 99: Fourth iteration in Area 3 (Investigator)

 Initial Level condition

o Same as previous player iteration

 Goals

o Confront Eve

 Story

o The player finally has the code to the Control Room, and enters it ready to confront Eve. When

he enters, he sees she is almost dead. The investigator and Eve have a conversation about Eve’s

intentions, the origin of his hate, and the fairness of her death and vengeance. The level ends with

a fade to black, where text explains that Eve died, and the Investigator wrote down a report of the

tragic events that happened in the laboratory.

 Gameplay

34. Players go back to controlling Agent Cooper.

35. The player accesses the control room using the code that he saw in the previous iteration.

LDD Confidential Unreal Engine 4

Jorge Montolio Page 101 of 101 6/1/2016

VI. REFERENCES

 http://vignette2.wikia.nocookie.net/half-life/images/c/c3/Depot_pods.jpg/revision/latest?cb=20090114004954&path-

prefix=en

 https://m1.behance.net/rendition/modules/24558673/disp/7619acb2e6465cb3bfec92f394cf4518.jpg

 http://i.ytimg.com/vi/O4-QYCKh6TM/maxresdefault.jpg

http://vignette2.wikia.nocookie.net/half-life/images/c/c3/Depot_pods.jpg/revision/latest?cb=20090114004954&path-prefix=en
http://vignette2.wikia.nocookie.net/half-life/images/c/c3/Depot_pods.jpg/revision/latest?cb=20090114004954&path-prefix=en
https://m1.behance.net/rendition/modules/24558673/disp/7619acb2e6465cb3bfec92f394cf4518.jpg
http://i.ytimg.com/vi/O4-QYCKh6TM/maxresdefault.jpg

